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determined by the analysis of tunneling currents.
This technique allows the forbidden range of en-
ergies in the complex band structure of a solid
to be probed directly.
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The Holstein-Boltzmann equation has been used to calculate the far-infrared absorp-
tivity of normal Pb in and above the phonon-frequency region. The absorptivity exhibits
a threshold at v =35 cm and weak structure at =70 cm related to the transverse and
longitudinal peak in the phonon density of states, respectively. It increases rapidly
through the phonon region, eventually saturating at the Holstein value. These results
agree with the recent experiments of Joyce and Richards.

%hat happens when a high-frequency electro-
magnetic wave is incident on a pure metal at
very low temperature ~ To the extent that the
metal can be approximated by a free-electron
gas there exists no mechanism for the loss of
electromagnetic energy; the absorptivity is zero. '
Some years ago, Holstein' showed that, even
at T = 0 and for an infinite residual resistance
ratio, there exist, in actuality, two dissipative
mechanisms. One is due to the presence of a
surface. ' The electrons acquire an oscillatory
energy from the electric field in passing through
the skin depth 6f; this energy is then converted

to heat upon diffuse collision with the surface
and subsequently dissipated in the interior of
the metal. The other mechanism is purely a bulk
process. ' The electron simultaneously absorbs
an incident photon and emits a phonon. From a
quantum mechanical point of view the "free" con-
duction electrons are able to absorb the photon
because collision with the surface or a phonon
allows for the conservation of both energy and
momentum. Holstein considered the high-fre-
quency limit, i.e., ~»~D, a typical phonon fre-
quency (e.g. , for Pb, h~n -8.3 meV), where the
volume absorption process is independent. of
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frequency. In this range the excited electron-
hole pair can interact with all the zero-point pho-
non modes, resulting in a constant effective col-
lision time ~,&f. The aim of the present Letter
is to extend the Holstein volume absorption (A„)
to lower frequencies through the phonon frequency
region. In this regime it is not energetically
possible for the excited electron-hole pair to
interact with all the phonons; hence, 7', «(u, ) and

A„become frequency dependent and naturally re-
flect the phonon density of states of the metal.

To calculate A„, a perturbation expansion in
the electron-phonon (EP) coupling can be used
at high frequencies. ' The result to lowest order
in the EP coupling is A„= 2/v~ 7,«, where ~~
= (4mne'/m, ~)"', the plasma frequency, m, is
the optical mass, n is the electron density, and

f f is simply related to the usual high-tempera-
ture resistivity relaxation time 7; for a Debye
model, 7,« = 5kT7/25&uD. A measure of the EP
coupling is h/7, « itself and in each order of
the perturbation expansion one has h/7;«divided
by a typical energy denominator, 8~, the energy
separation of the electron-hole pair. Thus, the
perturbation parameter is 1/~w, «. For metals
with strong EP coupling (e.g. , Pb, Hg, Nb), 1/7', f f

= ~& and as cu -~» ~ ~,qq
—1, i.e. , the perturba-

tion expansion is not valid; at lower frequencies
one must include multiphonon processes. Hol-

stein, ' in his general analysis of transport phe-
nomena in an electron-phonon system, has shown

that one need only consider two basic types of
multiphonon contributions to the conductivity (for
zeroth order in c,/v F, where c, is the velocity
of sound and v F is the Fermi velocity): (1) a
sequence of single phonon exchanges between the
electron-hole pair, the so-called ladder dia-
grams (cf. Fig. 6, Ref. 4), (2) a series of single
phonon emissions and reabsorptions by the elec-
tron (hole), i.e. , the self-energy parts. The sum-
mation of all the latter processes necessitates
the use of the exact propagator' for the contribu-
tion of each electron/hole (solid) line to the dia-
grams in Fig. 6, Ref. 4. It is the rapid varia-
tion with energy of the self-energy part contained
in the propagator, in the range 0 & is eFi —(h~o,
that leads to the above-discussed frequency de-
pendence of ~,&F(~). Strictly speaking, it is the
imaginary or dissipative part of the self -energy
which contributes to &,«(&o). The real part of
the self-energy gives rise to frequency-depen-
dent dispersive effects. These effects are in-
cluded (in a natural way) in the present calcula-
tion. However, the characteristic features of
the bulk absorption are dominated by the dissipa-
tive real collisions of electrons with phonons.
The dispersive effects would be most clearly
manifested in an experiment which is sensitive
to the shift in the electron energy levels. as a
function of energy, such as cyc1otron resonance. '

Summation of a11 the ladder diagrams is equiv-
alent to the solution of the following transport
equation' (T= 0):

i(q v„-~)C, = v„+(~/h)g I &„ i'(4, -C, )(6(~-~'+ h~„)[f"'(~'+ h~) +f"(~')]

+ (i/r)P(f —6'+ ltd». ) '[f" (6''+ h(d) f "~ (E'')] ), —

and a subsequent evaluation of the conductivity,

v„=(2e /Q)g„v „4 [f (E) —f' '(e+h(u)]/8'(u. (2)

The Holstein-Boltzmann equation, (1), reduces to the usual linearized Boltzmann equation for the dc
and extreme anomalous skin-effect limits. ' The left-hand side of (1) contains the Fourier transform
of the space and time derivatives of the "distribution function" per unit field, 4, ; on the right-hand
side the electron velocity v~, is the driving term (the field is taken to be in the y direction) and the
second term can be described as a quantal modification of the difference between the "scattering-in"
and "scattering-out" contributions familiar to transport theory. iV» i2 is the electron-phonon matrix
element and the delta-function (principal-value) term represents real (virtual) effects associated with
this interaction. The term proportional to 4, can be rewritten as

—4„(I(e) + I (e+ ha) + j[M(a+ hey) —M(e)]j/h,

where M(e) [1(e)] is the real [imaginary] part of the electron self-energy; expressed in this form (3)
is similar to the usual attenuation term of the Boltzmann equation with I'(e)/h playing the role of an
energy-dependent collision frequency. The self-energy is of central importance in the calculation
and fortunately has been determined with great accuracy for Pb' (corrections are of order c, /vF).
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-f~&(~) =1+»/@Q ~&» I'[(v, v. il', ')&(&')-&(&)H

4ffo(ru) j(u = ( fdp/(u)'f, „' „de%(e)/k, (5)

where (5) holds for a cubic material and fd~ is
suitably averaged over the frequency spectrum.

For fd =&uD the integral equation (4) contains
no obvious smallness parameter. However, a
typical electron-phonon collision involves a
large-angle scattering and thus the coefficient.
of P(e), v„"v„/v~', is an effective small param-
eter. (4) was solved numerically by an iteration
in this parameter and the iteration scheme was
analyzed in detail for an Einstein model. The
expansion parameter, for fd =~D, is —,'y'/y,
where y' =—(vz'(1 —Q'/2kF')), y= (vz'), and

(v.') f, "=-'Q'(v:)dQ f '"'Q".'dQ, (6)

a normalized average of the dressed electron-
ion pseudopotential. The effective expansion pa-
rameter decreases with increasing frequency
and the iteration tends to the Holstein solution
at high frequency. The values of y', y for Pb
have been determined as follows: y is propor-
tional to the first moment of n'(v)E(v), "and the
value so obtained is y=0.037. This agrees quite
well with the value calculated' from the Heine-
Abarenkov (HA)" model pseudopotential, yHA
= 0.038. Using the HA pseudopotential, McMillan"
has numerically determined y-y' = 0.0213. Thus,
[y'/ylpb = o 44.

An "interpolat:ion solution" has been shown to
agree within 2%% of the second iteration solution
of the Einstein model over the entire frequency
range of interest. This interpolation solution
essentially accounts for the effect of the "scat-
tering-in" term by scaling the term in (3) with

0)
the factor (y—y')/y. Using the above values of
y, y' and the self-energy' for Pb, the normalized
bulk conductivity, o', + io2= (&u/m~')'4ffo (&d)/&u, was
computed and is shown in Fig. 1. Although the
local limit is strictly not valid until v &240 cm
(as will be indicated), it is instructive to discuss
o„to elucidate the phonon effects; also a„will 0
be utilized in the nonlocal calculation below.

The transverse and longitudinal peaks in
of'(P)E(v) at v=35 and 67 cm ' are reflected in
the two dips (at 45 and 77 cm ') in o,. The same

peaks are exhibited in 0, by a threshold at v

=35 cm ' and a weak knee at v=70 cm
These dominant features of o.'(v)F(v) are some-
what washed out in 0» by two energy integra-
tions: the first for the self-energy and the sec-
ond for the conductivity.

The function P(e) varies slowly with energy
at both high (fd»~D) and low (~ «~D) frequency.
In these limits some insight can be gained by
using the Drude form for the conductivity,

2 [ eff ( eff) l/[ ( eff) )

At high frequency (&ur, f f » 1) fT2 1-((d & ff)
o, —(co~,ff) ' as indicated in Fig. 1; from these
limiting values one obtains the constant (Hol-
stein) value for w, ff(Pb) =4.7&10 ' sec. This
is numerically accurate to the extent that the
ratio" (Q'v'/e~)/(v~'/~z) is equal to the scale
factor (Q'vz') /(v ) . Since Q'vz' is strongly
peaked" at Q/2kF= 0.4, in a region where the
angular average of the phonon spectrum (d~ is
relatively flat, "the ratios are expected to be
equal within =10% (see below). At low frequency
[(d T f f (~)] ' rapidly goes to zero, so that o, also
is -[~7,«(~)] '~ ra'; in a more exact calcula-
tion it is ~ ~'. For o„however, the correspond-
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FIG. 1. The (q =0) normalized real (a&) and imagi-
nary (0.2) parts of the bulk conductivity of Pb. Dashed
lines at 35, 67 cm ~.

The self-energy is related to o.'('P)F(P),"which is obtained numerically from tunneling data, where
n'(w) is the square of the EP coupling and +(v) is the phonon density of states as a function of energy
v (cm ') '

As a first consideration in the solution of (1) we shall set the wave vector' q =0. After solving (1) in
this limit, we shall use the solution in a Boltzmann equation and include the nonlocal aspects (q WO).

We make the usual Ansatz 4~ =v„P(e). Now, (1) and (2) are simplified to
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ing Drude form (7) must be modified by the low-
frequency limit of the real part of the self-en-
ergy. The effect is to change the mass in the
normalizing factor ~~ and thus o, —m, z/m** as
~ «&uz, . From Fig. 1, m**jm„=1.87; m"*
(cf. Sect. V.C. of Ref. 4) differs from the specif-
ic heat and low-frequency cyclotron-resonance
mass m* (for Pb, the theoretical' m*/m, z

= 2.54)
by the "scattering-in" contribution. The value
obtained for m** is accurate to the extent that
the (Q vo /(uo )/(vo /(uo ) is equal to (Q vo2) j
(vo') . The argument for this approximate equal-
ity is the same as above. ' The effective mass
m** increases" with frequency (as shown in

Fig. 1) until the threshold of o,.
In calculating the absorptivity A we must now

consider the nonlocal aspects (q 0 0). We adopt
a procedure similar to the one used in Sect. IV
of Ref. 5 and we assume that the technique used
above to handle the "scattering-in" term is
valid to a good approximation with a finite q.
The result is to reproduce the Reuter-Sond-
heimer (RS)" solution (specular case) for the
surface impedance Z [A = (c/m)ReZ],

Z= (8i(u-/c')f, dq/[q' ,'6~ -'—K(q)]

with, however,

v(q) = f K(qv ~/Q(e)):d~/80(e),
6F QQ)

hQ(e) = —hu —(1—y'/y)(M(e)-M(e + her) + i[I'(&)
+I'(a+he)]], 6& =c/z~, and E(s) defined in (A10),
Ref. 16. An analogous result holds for the dif-
fuse case. The main consideration, now, is
whether the anomalous (nonlocal) or local limit,
for (8), is applicable in the phonon frequency
region. This criterion can be most clearly de-
termined in the series expansion of the surface
impedance (6.1) to (6.6) in Dingle. '" For this
purpose the series parameter can be written
as g =-,'(v „/6z v)'[I+i/cu7;f f((L)] . The anom-
alous limit obtains for

~ $ ~
& 1 and the local limit

for ~$~ & 1. Since [&u~,«(~)];„=1,the appro-
priate limit is determined simply by v

~/Czar.

The band parameters for Pb are obtained from
the Chambers" value of o/l, which is equal to
8.46&&1022 (cm sec) ' in Gaussian units. From
this value, assuming a spherical Fermi surface
for Pb, we obtain v „=1.24x10' cm/sec and the
effective h&u~ =7.43 eV (~~'/4mv„=o/I); thus,
for h~&30 meV (or 240 cm ') the local limit
is app1icable. For the phonon regime we use the
large-q asymptotic expansion of (9) and retaining

the two leading terms we have

8v 3 4w'v ~
U 8v3 16c
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FIG. 2. The theoretical (solid line) and experimental
(dotted line) absorptivity of Pb.
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where 0=—J,„„„deQ(e)/v A. s a convenience and
to an excellent approximation we replace iG/(o
in (10) by (o, +io, ) '. The results, using (10),
are shown in Fig. 2. The main features of the
theoretical (solid line) absorptivity are (1) a
point of inflection and threshold at 0=30 cm
(2) a rapid rise in A due to I' [or h/r, f~(&u)] above
30 cm ', (3) a very weak knee at v = 70 cm
Below &=30 cm ' the absorptivity is due to the
anomalous skin effect (ASE) with, however,
phonon renormalization effects. In this frequency
region, "the curly brackets in (10) are replaced
by —m~*(&u)/2m, p, which is equal to 1.0 at v
=30 cm ' and is 1.87/2 at 5 cm '. The dashed
line in Fig. 2 represents the results of (10) with
I'=0. In the sense of the Dingle series in (10)
A„and the ASE absorption are additive (over
the frequency range considered in Fig. 2) but
with the important renormalization effects in-
cluded in the latter. Also shown in Fig. 2 are the
experimental results of Joyce and Richards'
shifted slightly to fit the theoretical curve in the
threshold region. The agreement is satisfactory;
the differences can be attributed to (1) experi-
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mental error (quoted in Ref. 20 and included in
Fig. 2), (2) the next-higher term of the Dingle
series —a careful estimate yields positive cor-
rections of 6%%uo at 100 cm ' and 13% at 180 cm
(3) a small (&10%) q-dependent correction to the
1-y'/y factor, (4) variations in the choice of
the band parameters, especially ~ F.

In the near-infrared and optical region the
volume and surface absorptivity are additive. '
At the higher frequencies A„-2/(u~ 7 (in the
local limit) and for h~~ = 14 eV, A„=0.002; thus,
assuming diffuse scattering, the absorptivity
saturates at 0.005.

As it turns out, the HB integral equation (1)
need only be solved (as such) for a, strong-coup&-
ing EP metal with vF/5&&uD =1. For Pb in the
phonon regime (1) can be solved by iteration"
in (g v„) ' (assuming the specular case): 4
=4' "+C' ' "where 4' ' = v~„/ig. v„, etc. Equiv-
alently, in terms of diagrams, 4 to obtain A in
the form of (10) one need only consider the two
lowest-order ladder diagrams (zero- and one-
rung ladders, but with exact electron/hole prop-
agators). The contributions of the two diagrams
to o(cu) are then expanded in (ll v„) ', retaining
the first two terms (each rung brings an addition-
al I'/hq v„). The statement (made above and in
footnote 89 in Ref. 4) that (1) reduces to the
Boltzmann equation in the ASE limit holds in
the "nonrelaxation" region (&u~«1, at finite
temperature), where ~ can essentially be set
euqal to zero. Ne are considering ~w, «& 1,
so there are co-dependent phonon effects in the
ASE limit, but note they first appear in the high-
er order (q -') term.
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