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From measurements of the velocity of second sound and the osmotic pressure the iner'-
tial mass of He in superfluid He has been obtained as a function of temperature and con-
centration. The results indicate that (i) the He quasiparticle spectrum is not quite para-
bolic and (ii) part of the quasiparticle effective interaction is velocity dependent or "non-
local" and resembles the interaction of spheres moving through a nonviscous classical
fluid.

As usually interpreted, the Landau and Pom-
eranchuk' (LP) and Bardeen, Baym, and Pines'
(BBP) theories of liquid 'He-'He mixtures pre-
dict that at low temperatures, where the phonon
and roton densities are negligible, the normal-
fluid density p„should be given by

p„=n,m,

where n, is the 'He number density and the mass
m should be independent of temperature and 'He
concentration. This result depends on two as-
sumptions: (i) The quasiparticle energy c,
which is the energy change on adding one 'He of
momentum P to a very weak solution of 'He in

He, is given by

e = -E, +p'/2m

and terms in higher powers of p' may be neg-
lected. (ii) In the BBP theory, which takes into
account an effective interaction between 'He

quasiparticles, the interaction v(r) is assumed to
~

to depend only on the interparticle distance x and
not on the particle velocities with respect to the
superfluid. The interaction energy is thus un-
changed when the quasiparticles are accelerated
with respect to the superfluid, and therefore v(r)
(or its Fourier transform V~) does not contribute
to the normal-fluid inertial mass.

If we define an empirical inertial mass

m, = p„/n„ (2)

determination of the temperature and concentra-
tion dependence of m; allows one to test assump-
tions (i) and (ii). In this Letter we obtain p„and
m; from measurements of the velocity of second
sound.

An equation for the velocity of second sound in
the low-frequency, hydrodynamic limit has been
derived by Khalatnikov. ' This rather complicated
equation, which depends only on thermodynamic
and Galilean-invariance arguments, can be writ-
ten as

(1—fg)(—(9p.,/9 In]) + ((T/C)(BS/9 In))
4 2 (3)

where formed to

g =n /n =X/(1+nX),

f= 1 + o. m, /m~ =—-0.53. (5)

(This result assumes that n, =n«X/(1 o+LX) and
it therefore neglects, among other things, ther-
mal expansion. The approximations involved
have been investigated and can be justified. ) In
Eqs. (3)-(5), X is the atomic concentration of
'He, n4, is the number density of pure He, + is
the BBP parameter 0.284 (see, for instance, Ed-
wards, Ifft, and Sarwinski'), p., is the 'He chem-
ical potential, and S and C are the entropy and
specific heat per atom of 'He. [Using $ « I and

p4(T, X) = p4(T, 0)-&/n«, where & is the osmotic
pressure of the solution, Eq. (3) can be trans-

The analogy between second sound in the mixture
and ordinary sound in the quasiparticle gas is
quite clear. ' The derivative»/& In) can be re-
garded as the "osmotic bulk modulus" of the mix-
ture. ] To determine p„ from the second-sound
velocities we used Eq. (3) with &p4/&In) and 9&/
&In) determined from an empirical equation
fitted to our measurements of the osmotic pres-
sure. '

The velocity of second sound was determined
by a time-of-flight pulse method over a 2.5-cm
path. To avoid difficulties in coupling thermally
to the normal component, the second sound was
generated mechanically using electrostatic trans-
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FIG. 1. Inertial mass m; versus temperature for
two He concentrations: 0.67% (circles) and 4.47%
(squares) .

e = E, + (p'/2m) [1——Xp'/p, ']. (6)

Here, we define the characteristic momentum p,
=m~s (so that p, /5=1. 5 A '), where s is the
velocity of first sound and y is a number which
we may expect to be of order unity. An elemen-
tary ca,lculation of p„using Eq. (6) gives

m, = m[1+ —", g(p')/p, ']=m[1+U~/Re]. (7)

Here we have calculated the mean square of the
momentum (P') using the fact that the distribu-
tion of momenta in the quasiparticle gas is very
close to that in an ideal Fermi gas of particles
of mass m. Tables of the molar internal energy

ducers with porous "superleak" diaphragms. '
The measurements were made at 0, 10, and 20
atm pressure between 0.03 and 0.6 K in a dilution
refrigerator. At zero pressure the concentra-
tions measured ranged from X = 0.143% to 6.278%.

Typical results for m; [defined by Eq. (2)] are
shown in Fig. 1. Clearly m; depends systemat-
ically on both concentration and temperature.
The errors bars in the graph represent only the
uncertainties in measuring u„&, and T; possi-
ble systematic errors in the derivation of the
"osmotic compressibility" are about the same
size, although not large enough to account for the
variation of m, with & and T. The intrinsic at-
tenuation of the second sound could not be mea-
sured, but the signals at very low concentrations
in the range 0.2 to 0.5 K were anomalously weak
and the results have not been used because of
possible dispersion errors. For other tempera-
tures observation of the echoes put upper limits
on the attenuation which indicate that the disper-
sion was small.

The dependence of m; on the temperature can
be explained in the following way. Instead of as-
sumption (i), we continue the expansion of the
quasiparticle energy in the LP theory and include
one more term:

0.5 I.O 1.5 2.0
k{o I)

FIG. 2. The excitation spectra of liquid helium. A,
the phonon-roton spectrum. The kinetic energy of
He quasiparticles: 9, simple quadratic form; C,

with term in p added. Curve D (arbitrary units) shows
the Maxwell-Boltzmann distribution in momentum for
a temperature of 0.6 K, the highest temperature used
in the present measurements.

~ F of an ideal Fermi gas have been given by
Stoner. ' The temperature ~ is related to p by
k s8 = 2'o (m~s)'/m)t. At tempera. tures high com-
pared with the Fermi degeneracy temperature of
the mixture, when UF= 2RT, Eq. (7) predicts a
linear dependence of m; on T. The curves shown
in Fig. 1 have been drawn in from Eq. (7) with
one value of X but, instead of a constant m as re-
quired by the theory, we need different values of
m for each concentration. These values we call
m„. The fitted value of X is 0.14& 0.05 corre-
sponding to ~=17+6 K.

The effect of the p' term on the excitation ener-
gy is illustrated in Fig. 2. The magnitude and
sign of the effect is plausible from a number of
points of view. For instance, the increase in
mass with momentum is in order-of-magnitude
agreement with a simple classical model. If we
assume that the difference between m and m, is
due to the inertia of the 'He backflow around the
quasiparticle, dilation of the volume displaced
by the 'He due to Bernoulli pressure would give'
approximately the effect obser ved.

The apparent values of m in Eq. (7) for each
concentration m„are shown in Fig. 3 as a func-
tion of $ =n, /n40~X. (Note that m„ is slightly
less than the value of m, at T =0.) The depen-
dence of m; or m„on ( or X is not unexpected,
since clearly p„=p and m; =m, for pure 'He

(X = 1). The fact that m, approaches m, at very
high concentrations has been demonstrated at
high temperatures in the recent fourth-sound ex-
periments of Dyumin et al. '0 Our values of m~/
m, are quite consistent with this limiting behav-
ior. On the other hand, as we have seen, the de-
pendence of m„on X is in contradiction to as-
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The calculation of p„, m;, and m„using the

nonlocal potential Eq. (8) (and including the P~
term in the spectrum) yields to first order"

x 2.2—
m„=m[1- ~ A, (m/m, )(n~/n4o) ]. (10)

2. l—
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3 = n, /n„
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FIG. 3. Dependence of the mass m„on reduced
number density $ =n3/n40. The full line represents
Eq. (10), while the dashed line gives the corresponding
inertial m; at the absolute zero of temperature.

sumption (ii) and is clear evidence that the quasi-
particle effective interaction is velocity depen-
dent.

Bardeen, Baym, and Pines included a discus-
sion of a velocity-dependent contribution to the
interaction in their paper but they did not include
it in any comparison with experiments. This is
the quantum analog of the "hydrodynamic" inter-
action between two spheres (representing the
'He) moving through a classical nonviscous
liquid. The corresponding Fourier transform of
this interaction in momentum (k) space has the
dipolar form'

V„"= —(A, /n~m4)(p, k)(p, k). (8)

= (m,s'/n, ) [—a'+ —,'A, k'jp, ']. (9)

Here p, and p, are the momenta of the (spheri-
cal) quasiparticles, k is the unit vector in the
direction of k, and &„ is a number whose magni-
tude is determined by the volume ~ and mass m
of the interacting spheres. BBP give as the
classical result A„=(&p,&u)'jm', where p, =n4om, .
Using the empirical mass m and &u = (1+n)/n4„
&„ is equal to 1.2. If we choose the volume ~ to
be appropriate to the hydrodynamic mass so that
ap4+ = (m-m, ), then A, = 2.9. BBP have also ob-
tained A~ = [1+o'. +(I—m, ) /m4]'(m, /m)' = 1.7 from
a quantum mechanical calculation for the virtual
exchange of a single phonon between the quasi-
particles.

In a recent paper, McMillan" has shown that
the "nonlocal" potential in Eq. (8) together with
the long-range, compressive term Vo= —n'~4s /
n4, calculated by Baym, "is sufficient to explain
at least semiquantitatively the empirical BBP in-
teraction. When both the interacting particles
have momenta on the Fermi surface the potential
reduces to the local form:

V» = Vo+ —,'A~k'/p4

This equation expresses the fact that as the con-
centration is increased the volume of He in-
volved in the backflow around each quasiparticle
is reduced, thereby decreasing the associated
inertial mass. The linear dependence on con-
centration which is predicted agrees with experi-
ment. The line drawn on Fig. 3 corresponds to
A„=3.8 with an uncertainty of +1.0 when we allow
for possible systematic errors in the osmotic
compressibility. This &„ is larger than the the-
oretical values which we mentioned above, and
empirical values for the local approximation
[Eq. (9)] which are around 2.5. Nevertheless, in
view of the many approximations involved we
think that the agreement is satisfactory, and that
the true nonlocal form of the interaction is prop-
erly represented, at least at large distances, by
Eq. (8).

Finally we note that the P' term in the energy
spectrum gives an additional contribution in the
specific heat which is approximately linear in
temperature for both degenerate and nondegen-
erate mixtures. When this contribution is al-
lowed for, the values of m from specific-heat
data' and from the osmotic pressure' are all
consistent with the value of m„, from Fig. 3,
namely (2.28+ 0.04)m~.
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An exact theory of plasma filaments observed in coaxial accelerators is derived from
a steady-state (9/Bt =0) description of the three-dimensional flow of deuterium plasma.
Ionization and recombination reactions are considered. Magnetic structure of the fila-
Inents (bundles of helical field lines), density distributions, and flow field fit the experi-
mental evidence.

By considering shock-wave conditions for the current sheath (CS) in coaxial accelerators (CA), it
can be proved' that the plasma vorticity ~ = 2V' ~u is large in the region of space where the filaments
are located, immediately behind the shock front Z (Z is considered, essentially, as the foremost
luminous face of CS). Vorticity and filament axis have the same orientation' (parallel to the z axis;
see Fig. 1; without a relevant loss of generality we take 9/&z =—0, the filaments are considered as
parallel cylinders). The existence of a large ~ in a narrow region of space (containing the filaments)
is not sufficient to conclude that vortex structures exist in that region. More stringently an analytic
description of the plasma can be deduced which depicts the vortex nature of the filaments. The essen-
tial assumptions of the theory Isee Eq. (1)] and the general results [see Eqs. (2)] are set forth below
before specializing formulas to the filament problem. We can show that a strong component 8, (2500
G and larger) of the self-consistent magnetic field exists along the filament axis (orthogonal to Be
—= B,) inside the filaments. This fact was already pointed out by magnetic probe measurements. ' The
density in phase space for ion and electrons f, satisfies

df, /dt =S, ,

where d/dt is the Vlasov operator with self-consistent fields E = —Vp, B=V &&A; 9/&t = 0 in the CS
frame of reference (moving with a velocity u, -10' cm/sec in the laboratory system); the source term
S accounts for ionization and recombination reactions; the indices + are sometimes dropped. The
role of the neutral atoms is simply to affect the anisotropy in velocity of the newly born charged par-
ticles and to function as a reservoir for ions and electrons. Neutral atoms are further disregarded.
S is chosen ad hoc, according to these criteria. : (I) A solution of (1) can be obtained at a glance if a
solution f„of the Vlasov equation df„/dt = 0 is known; in our case f„=f„(E,p, ), where E, p, are ener-
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FIG. 1. Profile of the current sheath between the electrodes.


