
VOLUME 25, NUMBER I PHYSICAL RKVIKW LKTTKRS 6 JUz,r 1970

ASYMPTOTIC SYMMETRY, PARTICLE MIXING, AND K,~-DECAY BRANCHING RATIOS
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A concept of asymptotic symmetry is formulated and applied to the determination of
mixing parameters between the ~, g, and g' (958) in broken SU(3) and SU(2) symmetries.
One of the solutions gives rise to a rather large violation of the j&I j=—,

' rule in the E,3

decays which is not inconsistent with present experiment.

This paper aims to discuss the particle mixing
effects by taking the view of asymptotic symme-
try which assumes that the SU(3) and SU(2) sym-
metries are well realized among particles of ex-
tremely high momenta. A similar assumption
has been used in deriving several successful sum
rules from the chiral SU(3)SSU(3) algebra. ' To
derive our result by a short-cut (but instructive)
computation, we express the requirement of as-
ymptotic SU(3) symmetry in a simple form. Let
us consider the pseudoscalar nonet and denote
their annihilation operators as a (k), where o
stands for w", I'", I7"', rP, and g"(958), and
k denotes their momenta. It should be noted that
a (k) are not the Heisenberg operators but the
operators of the physical (i.e. , incoming) parti-
cles with mass m . Denoting the SU(3) genera-
tors by V;, the transformation of physical parti-
cles in broken SU(3) symmetry can be expressed

in the following form:

[V;,a (k)]=i+au, a(k)aa(k)+5u, (k).

Here, the first term on the right-hand side of Eq.
(1) picks up all the terms linear in a's (but not
a 's) and the remainder is denoted by 6u. The 6u

is of the order of SU(3) breaking. By inspecting
the vacuum expectation va1ue of the Jacobi identi-
ty for [a& (k), V„a (k)], we find a constraint,

u, „,*(k)=-u, (k). (2)

Our requirement of asymptotic symmetry is that
the 5u; (k) can always be neglected in the limit
jkj- ~. Let us now recall that the total Hamilto-
nian, when expressed in terms of the physical
fields, takes the form

H =Q f~„(k)a„(k)a„(k)d'k+ ~ ~ ~,

with v (k)=(k'+m„')' '. For large jkj we can
write

w (k)a (k)a~(k) = jkja t(k)a (k)+(m '/2jkj)a (k)a„(k)+ ~ ~

By utilizing Eq. (2) and ignoring the 6u term in Eq. (1) from our asymptotic condition, we find [V;,
jkjQ~a~ (k)a~(k)] =0 for jkj- ~. We can thus proceed for large jkj as follows:

i&k, ~j [V, , V,.]jk, n& = (k, ~ j [V, , [V„e]]jk, ~)

= &k, ~ j [V;, [V, , E'.(m. '&2jkj )a.'(k)a. (k)]]jk, ~&

a a (k) =g, c a, a,.(k), (6)

Now Eq. (1) shows that the operators a (k) form
a linear realization of the SU(3) group for large
jkj. Usually the linear SU(3) representation is
expressed in terms of a, (k) [j= 1, 2, ~ ~ ~, 9] which
satisfy

[V, , a, (k)] = if...a, (k) for j = 1, ~ ~, 8,

=0 for j =9.
Then our a (k) must be linearly related to the
a, (k) in the limit jkj-~,

c8,. defines the mixing angles. In our formulation
the mixing angles are always defined in the as-
ymptotic limit. We note that at finite momentum
the situation is far more involved since the mix-
ing parameters will be influenced by the 50 term
in Eq. (1). In broken SU(3) and SU(2) symmetry
the mixing appears among the operators of the ~',
q', and q" fields. By using the Euler angles (&u,

9, p) we write for jkj-~, for example, a„(k)
= cos9 costa, (k) + (sin9 costs-cos 9 sing since)a, (k)
+(sin9sin&u+eos9siny cos~)a, (k), etc. Thus the
c8,. can be expressed in terms of the following
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mixing parameters: o =—c„=cos9cosy, P-=c„,=sin9cose —cos9sinp sin&a, y-=c„=sin9sin~+cos9
&& sin(P cosod, P = —c &&

= sln9 coscP, y =——c
& &

—sin(P, a =—c oo
= cos9 cosh) + sln9 sing sing), 5 = c oo

= cos9 sin(d
-sin0siny cos~, c—= c„., = —cos0sin~, and d=—e~, =cosy cosv. All other c~, axe zero. If we assume,
as usual, that both the SU(3)- and SU(2)-breaking interactions belong to an SU(3) octet, the following
"exotic" commutation relations hold' for the V's: [V„+,V„+]=0, [V»o, V, ]=0, and [V»o, V»o]=0. Then
using Eqs. (4) and (5), these commutators lead to the following mass relations:

(1 P-' y-')(m m-)+ (P')'(m, '-m, ') + (y')'(m „'-m.+') = o,

(m~'-m +') +3' '(1-P'-y )'~ P(m„o'-m „+')-3'"aP'(m „'-m +')-3'' cy'(m „'-m +') =0,

(P'+3'' a)'(m»o'-m „')+(y'+3'I'c)2(m»o2-m~. ') + [(I-P'-y')'~'-3'"P]2(m»o'-m o') =0.

(8)

(9)

Here P, y, P', and y' are the quantities of the or-
der of SU(2) breaking. In the SU(2) limit (P
=P=y=o, 9=q =0), m, o=m, + and m»o=m»+ from
Eqs. (7) and (8), respectively, while Eq. (9) gives
the Gell-Mann —Okubo (GMO) mass formula, in-
cluding the SU(3) q-q mixing (mixing angle oo),
i.e. , 4m»' —3m „'—m, ' —3 s in'&u (m „'—m „')= 0. In
fact, Eq. (9) provides the modified GMO mass
formula, including SU(2) breaking. ' In the pres-
ence of SU(2) breaking, Eqs. (7) and (8) become
relevant. If we use the same approach for the
hyperons, the sum rules corresponding to Eqs.
{7)and (8) are the well-known ones, ' mz--mzo
=mzo —mz+ and (m„—mp)+ (m-. -m-. o) = (mz- —mz+),
respectively. The main difference, besides the
fact that we have a, nonet for the bosons, is that
the ~'-Ao mixing is not very important. ' The ori-
gin of these three sum rules is clear. They are
the conditions (evaluated in the asymptotic limit)
that the 1=2, 1, and 0 parts of the 27 representa-
tion do not appear in the total Hamiltonian, Eq.
(3), leaving us only the octet term. In the ab-
sence of the q'(9 =+ =0), Eq. (8) gives the q-m

transition mass previously obtained. ' Equations
(7), (8), and (9) are just sufficient to determine
all the mixing parameters. However, (without

using a computer) we here solved the equations
in an approximate way by assuming that the SU(3)
71-q mixing is larger than the SU(2) mixing.
Namely, we take a = cosa, 6 = sin~, c = -sin~,
d = coscu, P' = P cosv + y sin~, and y'= -P sine
+y cos~. From the SU(3) GMO mass formula,
the SU(3) 'g-'q mlxlllg angle ls given by sin~
=+0.18. This rather small value of m makes our
approximation crude. We obtain the following
sets of values of P and y: (I) sin~ =0.18, P =0.022,
y=0 038 (H) sin&v=0. 18, P=-0.0064, y= —0.038;
(III) sine = —0.18, P=0.019, y= —0.032; and

(IV) sin&a = —0.18, P= -0.0061, y =0.038. Because
of our approximation, only the first figures of
the numbers for P and y may be trusted. For P
we thus essentially have two distinct values, one
about 0.02 and the other about -0.006. The latter

is close in magnitude to the one obtained' without
considering the g, while the former is consider-
ably larger and may have new interesting impli-
cations. We now point out that the larger value
of P obtained above has an appreciable effect on
the violation of the I&II = 2 rule in the K» decays.
We consider here only the K„decays since for
these decays we can neglect the contribution of
the so-called f form factors. The relevant ma-
trix elements of the K„' and KI„' decays are
then

& '(p')I v„' (0)Iff'(p))

=(@.@.)"{-I)2'"(~ ~ )„f,(q')

&& (p')IV„' (0)IJ~'(5)&

={2&.2p. ) "(-1)V ~ ).g, (').
Here q'= (p —p')'. In the absence of SU(2) break-
ing, f, (q') =g, (q') and, in particular, f, (0) =g, (0)
=I+0(e')+ ~ ~ ~ . Here O(e') denotes the second-
order SU(3)-breaking effect. The O(e') term will
be small [in our asymptotic SU(3) symmetry it is
taken to be zero], and there is a plausible argu-
ment' that O(e ) &0. The pion energy spectra of
the K@~ decays have a maximum around g =0.
Therefore, the most important contribution to
the K,~-decay rates comes from the form factors
in the region around q' = 0. On the other hand,
our asymptotic symmetry {which is realized in
the limit IpI = Ip'I =~) yields best information for
the form factox's with q = 0. We now note that in
the presence of SU(2) breaking the f, (q') will be
x'enox'mallzed by mixing. Since we can write fox'

large Ip'I, approximately, Im'(p')) = a, t(p') I0)
+Pa, (p')I0)+ya, t(p')I0), we obtain using Eq. (5)
f, (0) = I+O(&') +3'"p, while g+(0) will not be
cha, nged in oux approximation. Since the domi-
nant contrlbutlon to the x'ates comes from the re-
gion q = 0, we predict for the branching ratio S,
S=—I"(Kz„o)/21'(K„') (S =1.012 if we consider only
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the phase-space difference' ),

S=[1+O(&')]'[I+O(&')+3~~2P] 'x1.012

=11-2(3)'~'P[1+O(e')] 'f x1.012. (10)

The latest world average' gives I'(K„') = (3.93
+0.06) &&10' sec ' and I'(K~,~ )=(7.22+0.29) X10'
sec ', respectively. However, the error should
be regarded with caution in view of internal dis-
agreement in the data. ' The above world aver-
ages yield S=0.92+ 0.04. Thus there seems to
be some indication of a sizable violation of the
~&I~ =- rule a.nd also of S&1. If we set O(e') =0
(by assuming strict asymptotic symmetry) in Eq.
(10), the positive values of P, P=0.02, yield S
=0.94, whereas the negative ones, P= -0.006,
give S= 1.02. Since the O(e') is likely to be nega-
tive, ' its inclusion will enhance (but probably
slightly) the effect obtained above. In the above
estimate the effect of the usual radiative correc-
tions involving the charged lepton is neglected.
They have a smaller effect' than that of mixing
if P=0.02. Thus we have seen that if the solu-
tions P =0.02 are correct, a rather sizable viola-
tion of the j&I~ =

& rule, S=0.94, is expected,
and this is not in contradiction with the present
experimental situation. If the ~&I) = 2 rule is well
satisfied, we prefer the solutions P=-0.006.
Naively, we expect a similar trend also for the
K» decay. " Our argument indicates that for the
determination of the vector Cabibbo angle it is
safer to use the Kl „' rate rather than the K,3'
rate, since g, is free from the SU(2) mixing ef-
fect. By using a form of g, (q'), g, (q') =m+*0 (q'
+m„*o') ', we obtain" sine» =0.209+0.010. This
should be compared with the one determined"

from P decay and p, decay, sin9~ =0.2095+0.0086.
We thank Mr. L. Bessler for his careful read-

ing of the manuscript.
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