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A new strong-coupling diagrammatic perturbation treatment of the Anderson Hamilto-
nian confirms in finite order Kondo divergencies for the partition function, associated
with an effective s-d coupling J as predicted by the Schrieffer-Wolff transformation.
This holds true also for the symmetric case. By summing the diagrams with two con-
duction-electron intermediate states in the limit U- ~, a Kondo temperature with J
near diverging is obtained.

Similarities between the physical properties of the Anderson and the s-d exchange Hamiltonians for
dilute magnetic alloys were suggested when Schrieffer and Wolff established the approximate equiva-
lence of the two models most elegantly by means of a canonical transformation. Other approaches,
confirming this equivalence, have been based on finite-order perturbation theory. "However, recent
treatments of the Anderson model by means of the Green's functions equations-of-motion decoupling
scheme" seem to show some important differences between the two models. In particular, Ref. 5 ob-
tains a value for the effective s-d coupling J which is half the value of the J in the Schrieffer-Wolff
transformation. ' In Ref. 6 it is proven that the decoupled equations of motion lead to vanishing of all
Kondo singularities in the symmetric case e„+&U =0.' Since for that particular case the Green's func-
tion perturbation theory carried out in Ref. 4 breaks down, while the functional-integral approach
leads to the usual Kondo effect, the situation is sufficiently unclear to be re-examined from the view-
point of direct perturbation theory.

For that purpose we follow Scalapino' up to his Eq. (4), which we rewrite as

Z/Zo=1+ Q f dA, f dA. 2.. ~ ~ f dA. „Q ~ ~ ~ V~) ~ - ~ V) (
n= S

x (k-electron operators)(d-electron operators).

where the second sum extends over momenta, spins, and all sequences of n d-electron and n k-elec-
tron operators. The first bracket, representing the normalized thermodynamic expectation value of
the 4-electron operators written in the interaction representation, can be evaluated in the usual way,
using Wick's theorem for thermodynamic averages. Wick's theorem cannot be used for the second
bracket since the zero-order d-electron Hamiltonian H„' contains the part Un„&n„&. Evaluating the
trace in the second bracket in the representation where H, is diagonal, we obtain

(d-electron operators) =no(00 f
~ ~ ~ c~, (X,.) ~ ~ c~,. (X,) ~ ~ /00)+n~t(01( ~ ~ ~ c„,(X,.) ~ ~ c„, t(X„)~ ~ ~ /10)

+n~ &(10~ ~ ~ ~ c~, (a,.). ~ ~ c~,.~(X„)~ ~ ~ ~01)

+n„(11I.~ ~ c„(x,.). ~ .c„.(X, ) ~ ~ ~ ll1).

Here n„n„&, n«, n„~ are the occupation probabilities for the corresponding d states (see Scalapino ).
Taking the set of d-electron operators c«(A.,)c«(X,)c«(X,)c,&(A.,)c,&(A.,)c,

&
(A.,) as an example in
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pgG. 1. (a) Graphical representation of the example discussed in the text. (b), (c) Two families of diagrams ro-
tated on a cylinder; (d), (g) representatives R, each one standing for a family. The second d level in (f) and (g)
may be occupied or not (arrow in brackets). %e get all fourth-order diagrams from (b)-(g), if we add to (c), (e),
(f), and (g) the corresponding diagrams in which the d) and d ) levels are interchanged.

(2), we obtain a nonvanishing matrix element only for the state ~10). We indicate the two d levels by
two parallel dotted vertical lines (the left one for spin up), and specify the initial state by drawing an

arrow if the corresponding d level is occupied. In our example at the "time-vertex" A., a dI electron
is produced and propagates (wiggly line) until it is annihilated at the later time A4 [see Fig. 1(a)],
other d

&
electron propagates from X, to X„while a d

&
hole propagates from X, to A, Then the matrix

element of the above operators between the ~10) states is given by exp(-(e &+U)X, + (e + U)X, + e,X,-e X,
-(e

&
+ U)A. , + (e

&
+ U)A.,). We obtain analogous diagrams for other processes.

From these diagrams we get the partition-function diagrams by adding the k-electron contributions.
For example, we represent c~, (A.;) by a full line with an arrow on it, pointing away from the vertex
at p,. on the dotted line o, carrying momentum k and spin 0. According to Wick's theorem the contrac-
tion of the k-electron operators can be represented by closing the full lines belonging to the same spin
in all possible ways (there are two possibilities for our example). An ascending line (particle) carry-
ing ko then stands for ~V„,)'(1-f„,), where the statistical factor refers to the states available to the
particle; a descending line (k'v') for ~V„.„~'f„.... We get an exponential factor containing the times and

energies, and an overall sign of the diagram (-1)', where, provided that all &-spin electron lines are
closed to the right of the dotted & line, and all &-spin electron lines are closed to the left of the dotted
& line, c is the number of crossings of full lines.

It is convenient to carry out the time integrations not for a single diagram, but for a family of dia-
grams "rotated on a cylinder, ""for which examples are given in Figs. 1(b) and 1(c). We then obtain

g/Z, —1 = (-1)'N Q MS — . fdze '[z(z-E, ) ~ ~ (z —E„,)]~ (-P) -a.-
(3)

Q 2wg

Here the sum extends over all diagrams R, each one arbitrarily chosen as a representative for a fami-
ly; N denotes the occupation probability of its initia. l d level (indicated by arrows on the dotted lines);
M and S stand for matrix elements V~, ~ ~ V„.,* and statistical factors (1-f„,)f„. "~ ~, respectively; &

is the length of the cycle, n is the number of interactions in R, and the integration path encircles all
poles of the integrand. The n-1 excitation energies (some of them may be zero or identical) can be
read off R by performing n-1 horizontal cuts between two subsequent vertices and subtracting the sum
of all descending full and wiggly lines from the sum of all ascending ones, where a d-electron energy
in an intermediate state is shifted by +U, if the other d level is occupied; two d electrons or d holes
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in an intermediate state always get the energy +(e + e + U). Instead of choosing one representative R
of ea,ch family of diagxams rotated on a cylinder, we can draw all diagrams and assign to the repre-
sentative diagram the residue at z =0 in (3), to the first rotated one the residue at z =E„etc.

We state our results briefly for R finite-order perturbation expansion of the susceptibility. In sec-
olld order 1I1 VI~ we repl"odllce ScRlRplllo 8 I'eslllt [ills EQ. (7)] fol the flee eIlelgy, Rild obtain R sllgllt-
ly different expression for the second-order susceptibility, which is independent of the bandwidth R,

X"=2Pu'&(0)IVI'[e, '-(e, +U) 'l

Whi]e our perturbation technique, in contrRst to thRt in Ref. 4, holds true for all values of g~, thjs
Rlld Rll following cRlclllRtlolls Rl'e VRlld only fol -peg Rnd p(cI+U) ++ 1, [If~ e.g.~ ) peI( && 1~ QIle finds
free-energy «rms proportional to W(0) IVI'»( pW), r«lecting the anomalously large density of states
in the unperturbed system (V„~-0) near the Fermi level, if eI-O. ]

In fourth order we obtain the first Kondo terms for g from "small" energy denominators g~-e, . in
'tile ovei'IRpplilg dlRgl'Rills Figs. 1(ll) Rnd 1(c) [Rnd 111 the correspondlllg dlRglR1118 111 tile family lepre-
sented by 1(d)]. These, together with the product of the occupation probability III, and the statistical
factors 1-f„and f,. expanded up to second order in the magnetic field, lead to In(PW) terms in the
susceptibility. The dominant fourth-order susceptibility contribution, given by Scalapino 8 result [Eq.
(14)], comes from diagrams with singly occupied, "magnetic" initial d states and does not show any
peculiarities in the symmetric case (this holds true for any order in V„I). We mention incidentally
that in the a priori negligible "nonmagnetic" d-state contx'ibutions we find small energy denominators
only in the symmetric case which, however, do not lead to Kondo texms.

The concept of looking for diagrams with a magnetic initial d' state and a large number of small in-
termediate-state energy denominators can be used to isolate the leading terms in every ordex of per-
turbation theory. In sixth order in V~„we have calculated explicitly all relevant terms and found Scal-
Rpiilo'8 guess [EII. (16)] justified with the correct Schrieffer-Wolff value /=2~V)'N(0)[e„'-(e„+U) ']
for the effective s-d coupling. Generally the leading X contributions turn out to be

y""'= g a„„[ln(PW)]" 'jV~'"e„"(e,+U} + * ~ ~ . (5)

If we assume a series in e, '-(eI+U) ' (in agreement with all references), we can check the coefficient

a„, in (4) from the limit U- ~. Proceeding to the order ~V~, we find the dominant terms given by a
very simple set of diagrams with not more than two conduction electx'ons in an intermediate state. Un-

fortunately other diagrams (with more than two conduction electrons in the intermediate state) also
contain leading logarithmic terms which, however, sum to zero.

Summarizing our results from finite-order perturbation theoryw, e emphasize two facts: (1) The ef-
fective 8-d coupling eT 18 the one predicted by the Schrieffer-Wolff transformation, and (2) the logarith-
D11c tex'Dls do not disappear ln the syDlDletrlc cRse 6g+ gU =0 ln contx'Rst to the x'esult in Ref. 6.

We next sum the infinite series of most divergent diagrams, given in Fig. 2. Based on our calcula-
tions in eighth order, we assume that in all orders diagrams which have Dlore than two k electrons jn
intermediate states contribute only to loga, rithmic terms two orders lower than the leading ones. The
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FIG. 2. The infinite diagram sumxnation leading to Eq. (5) shown for 0. = & (d ~ level occupied).
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zero-field susceptibility from the diagrams in Fig. 2 is given by

X=2P) 'XIV„I' ' [~,-e, —Z IV, , I'f, .(~,-~, ) '] '
~u t,'a' (6)

This is in agreement with the result from various theories for the s-d model. " It is tempting to inter-
pret the Kondo term in the denominator in (6) as a strongly temperature-dependent energy renormal-
ization, evaluated in Born's approximation, and to go to higher orders, including the next leading log-
arithmic terms for U- ~. We have achieved this by summing diagrams which consist of sequential
repetitions of Fig. 2(a) [for the simplest example see Fig. 1(g)] and the corresponding diagrams rotat-
ed on a cylinder. We obtain formally the same expression for the susceptibility as above, but with e,
replaced by e» M-(E+e»)+M(E) and e„replaced by e~-E. Here we get M(E), which is a sum of irre-
ducible diagrams, in which an external energy is fed in, from the integral equation

M(E) =&~V»a ~'(&-f». )~E+e» eu -+—~V»u ~'(&-f» ")[E+e»+e» ™(E+e»+e»)~

and E is determined by the self-consistency condition E =M(E). For small e, , where Schrieffer-Wolff
J'=2~V~ N(0)e, diverges, the first iteration of Eg. (7) leads to the simplified self-consistency condi-
tion

EN(O) = exp(-E [~V['N(0) ]-'}.
This has a positive solution for E, and thus the new s-d coupling J' = 2(V('N(0)(e, -E) ' never diverg-
es, in qualitative agreement with Toulouse and Coqlin. "

The authors would like to thank Professor J. R. Schrieffer for helpful discussions.

*Work supported in part by the National Science Foundation.
)Pn leave from Institut fur Theoretische Physik, Kmn, Germany, with a research grant from the Deutsche For-

schungsgemeinschaft.
)National Science Foundation Postdoctoral Fellow.
P. W. Anderson, Phys. Rev. 124, 41 (1961).
J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).

~D. J. Scalapino, Phys. Rev. Lett. 16, 937 (1966); L. Dworin, Phys. Rev. Lett. 16, 1042 (1966); D. R. Hamann,
Phys. Rev. Lett. 17, 145 (1966); D. J. W. Geldart, Phys. Lett. 26A, 31 (1968).

L. Dworin, Phys. Rev. 164, 818, 841 (1967).
A. Theumann, Phys. Rev. 178, 978 (1969); H. Mamada and F. Takano, to be published.
A. Oguchi, Progr. Theor. Phys. 43, 257 (1970).

~The same claim can be found in a recent preprint by Schotte.
For notation see Scalapino, Ref. 3.
D. R. Hamann, to be published; H. Keiter, to be published.
C. Bloch and C. De Dominicis, Nuel. Phys. 7, 459 (1958). The importance of considering these families for

nonmagnetic impurity systems has been shown by R. Balian and C. De Dominicis (to be published) for magnetic im-
purities described by an s-d Hamiltouian by one of the authors [H. Keiter, Z. Phys. 213, 466 (1968), and 214, 22
(1968)].

~~See, e.g., J. Kondo, in Solid State Physics, edited by F. Seitz, D. Turnbu11, and H. Ehrenreich, (Academic,
New York, 1969), Vol. 23, p. 183.

G. Toulouse and B. Coqlin, Solid State Commun. 7, 853 (1969).


