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ANALYTIC HARD-PION CALCULATION OF THE T=J=0 77 PHASE SHIFT*

J. J. Brehm, E. Golowich, and S. C. Prasad
Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01002
(Received 6 April 1970)

Using chiral SU(2) current algebra, we have derived a dynamical equation for the form
factor which describes the sigma-field matrix element between single-pion states. With
the aid of the model of Gell-Mann, Oakes, and Renner, we solve this equation in an ef-
fective-range approximation, and from unitarity deduce the 7' =J =0 77 phase shift. Our
analysis strongly favors the “up-down” set of phenomenological 7 phase shifts, and rules
out a narrow € resonance.

In a previous Letter' we showed how the concepts of analyticity and hard-pion current algebra, em-
ployed simultaneously, can form a basis for the dynamical calculation of a hadronic process.? We ex-
tend this approach here by deriving a dynamical equation for the sigma-field form factor, F(z),

(4w, )% (@) |0 (0) | 7° (p)) = =0, F(8), t=-(p—q), (1)
where the isoscalar® sigma field is defined by the following axial-vector-current, equal-time commu-
tation relations:

6(x,)[A,%(x),8,A,2(0)] = =16, 8 (x)o (x), (2a)

8 (xp)[A,%(x),0(0)] = i6(x)2 , A, “(x), (2b)
with @, 5=1, 2,3 as isospin indices. Our aim is to get the T'=J =0 77 phase shift, §,,. That the matrix
element in Eq. (1) is related to it is clear from unitarity; the phase of F(¢) in the elastic n7 region is
8oo-

We begin by defining the off-shell three-point functions

845 W, (g, )= [dxdy e='*"**i2"%(0| TA,*(x)a(0)4,7(»)| 0,
bas W, (@,p)= [dxdy e >3] 79,4, (x)0(0)A,¥)[0),
B0y W(g, p) = [dxdy e =" **2°%0|T5 , A ,%(x)0(0)2 ,4,°(¥) | 0) . (3)

The last of these gives the off-shell form factor F(q,p), extrapolated in the momenta q, p, and k=p—q.
As specified in (2), the operator ¢ has the property that (0|¢(0)|0)#0; so there are vacuum-state con-
tributions, proportional to &(k), in Eq. (3). In the process of applying the commutation relations to
relate the W’s, these vacuum contributions cancel; so we can consistently ignore them in using Eq. (3).
With this understanding, we may express all three vertex functions in terms of analytic form factors
by extracting pion poles:

F
va(q,p):Fuy(Q,p) p—_'_L—p F(p;Q) —2—_‘__:;[;2—un|)<q,p) (q +m1rz)Q(uppy+ )f(Q;p) (4a)
—iFmZ2
Wv(q,ﬁ):-qzz‘—;%[F(,P) e IO )], (40)
W(g, p)=[F.*m /(q* +m 2)(p* +m P)] Flq, p), (4c)

where we take for the pion decay constant F, =94 MeV. Current-algebra commutation relations enable
us to generate Ward identity relationships®* among the vertex functions of Eq. (3). Expressed in terms
of the form factors in Eqgs. (4), the Ward identities imply the following off-shell dynamical equation:

Fg,p)=-m 2+ 42 P,;;‘;,z(q,l?) N Ca ;Pz +72n,[) A%(R), 5)

m
where A° (k) is the sigma-field propagator in the variable ¢{= —k2,
pslx)

4m.".2 x—1

AS (k)= ——dx, (6)
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with scalar spectral function p,. If we take either g or p to the zero four-momentum limit, we regain
the soft-pion equation first derived by Amatya, Pagnanenta, and Renner.® However, the generality
of our hard-pion approach allows us to consider Eq. (5) on shell, p®=¢*= -m 2, where we find

P = -m 2+ BTl o ae ), ™

Given the SU(2) current-algebra commutation relations and the defining relations (2a) and (2b), Eq. (7)
is exact. It does not rely upon “strong” partially conserved axial-vector current,® but only upon the
existence of a pion pole in the axial-current divergence. Moreover, no o-particle pole is introduced;
instead analyticity in ¢ has been adhered to, so that the form factor F(¢) has the correct cut structure.

To solve Eq. (7), we shall approximate g,p , F,, (f) by using an analog of the “smoothness” hypothesis
of Schnitzer and Weinberg.? This gives, in terms of a single unknown constant 4, the relation’

qupyFuu(t) (t 2m )
F? 2m

m™

A% (D). (8)

The use of approximation (8) limits our study of Eq. (7) to the low-energy domain |¢{|<1 BeV? Thus,
we consider here only the 77 contribution to the spectral function p (¢),

3

ps"" (®= ig'—z $7

2[F(t)|20t 4m?), P*=%(t-4m ?). (9)

Although one may use Egs. (7)-(9) as the basis for a phenomenological study of T=J=0 77 phase shifts,®
our calculation gains considerably in predictive power with the use of a second assumption —validity

of the model of Gell-Mann, Oakes, and Renner.® Writing the Hamiltonian density as®
H=H-u,—cug, (10)

where H is SU(3)®SU(3) invariant and the scalar densities «, and u, transform as components of (8,3%
@ (3%, 3), we infer from Eqs. (2a) and (10) that

o(x) = —3(V2+e)[V2uy(x) +ug(x)]. (11)
Using the Goldstone-Nambu interpretation of Ref. 9, which implies
c=2V2(m 2-m2)/(m 2 +2m ?), (12)

we deduce that?®®
F(0)=-m 2. (13)

Insertion of Egs. (8) and (13) into Eq. (7) uniquely fixes the constant A, yielding A= -m 2/(F,m)?
The final form of the dynamical on-shell equation for F(f) is thus

t R AC
= _ 2_ S
F@#)=-m 2 P Jyme A t (14)

Equations (9) and (14) imply

ImF() = - 3 &iﬂﬁzﬂfmx)v, t>4m 2. (15)

Using the inverse-amplitude method of solution, with cutoff A, we find the following effective-range
formula for F:

(18)

3 1/2 9 1/2 -1
F(t): -Wl,,rz[l—' A 3 ¢ (__ HZEL—1>] ,

6477 FZ“‘_ 327 F.? 2m

m

containing a weak dependence on the single parameter A.
The most immediate use of Eq. (16) is a prediction of the T=J=0 77 phase shift §,, from the unitari-
ty relation

ImF= F*e'®0ging . m
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We find that

P
F/—Z‘ cotd,,

S2nF 1, A P
3t 172

1 N 12 +2pP
nm A .

T
2 am (18)

27

™

The present experimental picture of 77 phase
shifts is rather unclear.!’ An extensive series
of experiments on various charge states of the
production process 7N —7nN have been performed,
and the data from peripheral reactions have been
extrapolated to yield the desired 77 phase shifts.
The usual extrapolation procedure contains a two-
fold ambiguity, 6,0y, = 01,00+ 27, leading to
four possible solutions since 6, is near 90° at
the p mass.'’ Recent analyses appear to favor
either the “down-up”* ! or “up-down”* ! solu-
tions, which correspond, respectively, to a
sharp s-wave resonance or a very broad 77 en-
hancement. With this lack in understanding of
even the qualitative nature of 5, it is clear that
Eq. (18) can best be put to use by providing a so-
lution to the “up-down” versus “down-up” im-
passe. We have therefore determined the con-
stant A by making a least-squares fit to the phe-
nomenological phase shifts of Ref. 13, which
cover the energy range 625<¢'/% (MeV) <855. The
result is shown in Fig. 1. The “up-down” fit,
for which A=350m 7, is clearly preferred and
for this case we plot the predicted o,, from
threshold to 900 MeV in Fig. 2. The phase shift
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FIG. 1. Least-squares fit of Eq. (18) to the “up-
down” and “down-up” solutions of Ref. 13. Data error
bars, suppressed here, are shown in Fig. 2.

(3d6/dt'’?)~' =3 BeV]. Thus a single-level Breit-
Wigner form of the 7=J=0 77 amplitude in the
range 600 < ¢/2 (MeV) $1000 is inappropriate for
interpreting this very broad enhancement. Of
course our analysis does not preclude the possi-
bility of a fit to the data in terms of more than
one resonance. The s-wave scattering length a
is given by

o 1 _327F. 2% m A
passes through 90° at 960 MeV but does so too = 1 M yp—, (19)
slowly to assign a meaningful width'” [we get a bm; m my
160} _:}_;
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FIG. 2. Calculated phase shift, 6y, obtained from the “up-down” fit. The data indicated are taken from Ref. 13.
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to be compared with Weinberg’s soft-pion results,'®

1/ay,=320F2/Tm . (20)

! essentially

Numerically, we get a=0.1Tm ~
Weinberg’s value.

We now summarize our findings. The main in-
tent of this calculation has been to extend the
analytic hard-pion approach introduced in Ref. 1
as a calculational tool in hadron dynamics. In
doing so, we have been able, with a reasonable
degree of certainty, to resolve the ambiguity in-
herent in phenomenological analyses of the 77
T=0 s wave, We find that the existence of a sin-
gle narrow-width € resonance is not likely to be
understood within a calculation based on current
algebra and elastic unitarity. Corollary to this
is the conclusion that single-pole, zero-width
dominance of the o form factor is untenable.
Further, we verify the Weinberg result for the
s-wave scattering length, and in fact, agree
rather closely with the low-energy phase shift
which follows from a twice-subtracted dispersion
relation.’® By using the model of Gell-Mann,
Oakes, and Renner to fix an unknown constant,
and subsequently finding satisfactory agreement
of our prediction, Eq. (18), with the “up-down”
phase-shift solution (see Fig. 1), we indirectly
give credence to their approach. Since the com-
parison of their model with experiment is still a
matter of some uncertainty,®?° it is useful to be
able to submit our results to what should be as
broad a spectrum of experimental comparisons
as possible.
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