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ANALYTIC HARD-PION CALCULATION OF THE T= J=O mp PHASE SHIFT*
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Using chiral SU{2}current algebra, we have derived a dynamical equation for the form
factor which describes the sigma-field matrix element between single-pion states. Kith
the aid of the model of Gell-Mann, Oakes, and Renner, we solve this equation in an ef-
fective-range approximation, and from unitarity deduce the T =J=0 ~~ phase shift. Our
analysis strongly favors the "up-down" set of phenomenological ~7t phase shifts, and rules
out a narrow c resonance.

In a previous Letter' we showed how the concepts of analyticity and hard-pion current algebra, em-
ployed simultaneously, can form a basis for the dynamical calculation of a hadronic process. ' We ex-
tend this approach here by deriving a dynamical equation for the sigma-field form factor, I'(t),

(4~, ~,)"'('(q) lc(0)
l
~'(p)& = -(., &(t), &= -(p-q)',

where the isoscalar sigma field is defined by the following axial-vector-current, equal-time commu-
tation relations:

5(x,)[A,'(x), B„A„(0)]= -i5„5(x)o(x),

5(x )[A '(x), v(0)] = i5(x)B„A„'(x),

(2a)

(2b)

with a, b=1, 2, 3 as isospin indices. Our aim is to get the T= J=O zz phase shift 'happ That the matrix
element in Eq. (I) is related to it is clear from unitarity; the phase of E(t) in the elastic wm region is
&00.

We begin by defining the off-shell three-point functions

~., W„„(q,p) = fdxdy e-"""~'(0~TA„'(x)o(0)A,'{y)~0&,

5, W„'(q, P) = fdxdy e "*"''(0~ TB„A„'(x)o(0)A, (y) ~0&,

V., W(q, p) = fdxdy e "'""~'(O~TBpAq'(x)a(0)B, A,'(y) jO).

The last of these gives the off-shell form factor F(q, p), extrapolated in the momenta q, p, and k =p-q.
As specified in (2), the operator v has the property that (0

~
c(0)

~
0) CO; so there are vacuum-state con-

tributions, proportions. l to 5(k), in Eq. (3). In the process of applying the commutation relations to
relate the W's, these vacuum contributions cancel; so we can consistently ignore them in using Eq. (3).
With this understanding, we may express all three vertex functions in terms of analytic form factors
by extracting pion poles:

jV jV F 2

„II, ( ,q)p= „F.( ,q)p.. .p. F„(p, q) ..." .q„~.(q, p) (, , ".)(,", .)~(q, p),

~. (q, p)=,.;; I.(q, p) .. .p. F(q, p),

W(q, p) = [Z,'m, /(q'+m ')(p'+m„')] Z(q, p),

(4b)

(4c)

where we take for the pion decay constant F„=94 MeV. Current-algebra commutation relations enable
us to generate Ward identity relationships4 among the vertex functions of Eq. (3). Expressed in terms
of the form factors in Eqs. (4), the Ward identities imply the following off-shell dynamical equation:

7r rmm

where 6, '(k) is the sigma-field propagator in the variable i= —k',

A'(k)= P' )dx
4 „2x—I,
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with scalar spectral function p, . If we take either q or p to the zero four-momentum limit, we regain
the soft-pion equation first derived by Amatya, Pagnanenta, and Renner. ' However, the generality
of our hard-pion approach allows us to consider Eq. (5) on shell, p'= q'= —m,', where we find

y (t)
— 2 + UPU IIV ( ) ~& (t)

(t)
7t F 2 F 2 (7)

Given the SU(2) current-algebra commutation relations and the defining relations (2a) and (2b), Eq. (7}
is exact. It does not rely upon "strong" partially conserved axial-vector current, ' but only upon the
existence of a pion pole in the axial-current divergence. Moreover, no o-particle pole is introduced;
instead analyticity in t has been adhered to, so that the form factor E(t) has the correct cut structure.

To solve Eq. (7), we shall approximate q„p„E„„(t)by using an analog of the "smoothness" hypothesis
of Schnitzer and %einberg. 4 This gives, in terms of a single unknown constant A, the relation'

q,p„Z„„(t) (t-2m. ')
(8)

The use of approximation (8) limits our study of Eq. (7) to the low-energy domain ~t
~

1 BeV . Thus,
we consider here only the zp contribution to the spectral function p, (t),

p,"(t)=, „,( F(t) ~'0(t-4m, '), P'= —,'(t —4m,').

Although one may use Eqs. (7)-(9) as the basis for a phenomenological study of T=J =0 mz phase shifts, '
our calculation gains considerably in predictive power with the use of a second assumption —validity
of the model of Qell-Mann, Oakes, and Renner. ' Writing the Hamiltonian density as'

H = II-u —cu
O 8P (10)

where H is SU(3)SSU(3) invariant and the scalar densities u, and u, transform as components of (3, 3 )
S (3*,3), we infer from Eqs. (2a) and (10}that

0 (x) = ——,'(v 2+ c)[v'2u, (x) + u, (x)] . (11)

Using the Goldstone-Nambu interpretation of Ref. 9, which implies

c = 2~2(m, ' —mx')/(m, '+ 2m ~'),

we deduce that"

(12)

r(0) = -m,'. (13)

Insertion of Eqs. (8) and (13) into Eq. (7) uniquely fixes the constant A, yielding A = —m„'/(E„m, )'.
The final form of the dynamical on-shell equation for E(t) is thus

Z(t)= -m„'-, , ', dx.
t " p. (x)

Sl
7t 7I 4' 2 X

Equations (9) and (14) imply

Im&(t) =—,",
~

I'(t) ~', t ~ 4m,'.3 [t(t —4m ')]"'
64m m,'F.'

(14)

(15)

Using the inverse-amplitude method of solution, with cutoff A, we find the following effective-range
formula for F:

3 t'~2
t 2 2I + t'~'

containing a weak dependence on the single parameter A.
The most immediate use of Eq. (16) is a prediction of the T =J = 0 mm phase shift 500 from the unitari-

ty relation

Im F= F*e'~«sin5 (17)
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to be compared with Weinberg's soft-pion results, "

Numerically, we get a=0.17m, ', essentially
Weinberg's value.

We now summarize our findings. The main in-
tent of this calculation has been to extend the
analytic hard-pion approach introduced in Ref. 1
as a ealculational tool in hadron dynamics. In

doing so, we have been able, with a reasonable
degree of certainty, to resolve the ambiguity in-
herent in phenomenological analyses of the zz
T = 0 s wave. We find that the existence of a sin-
gle narrow-width e resonance is not likely to be
understood within a calculation based on current
algebra and elastic unitarity. Corollary to this
is the conclusion that single-pole, zero-width
dominance of the 0 form factor is untenable.
Further, we verify the Weinberg result for the
s-wave scattering length, and in fact, agree
rather closely with the low-energy phase shift
which follows from a twice-subtracted dispersion
relation. " By using the model of Gell-Mann,
Oakes, and Renner to fix an unknown constant,
and subsequently finding satisfactory agreement
of our prediction, Eq. (18), with the "up-down"
phase-shift solution (see Fig. 1), we indirectly
give credence to their approach. Since the com-
parison of their model with experiment is still a
matter of some uncertainty, '" it is useful to be
able to submit our results to what should be as
broad a spectrum of experimental comparisons
as possible.
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