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Magnetic properties are calculated for a spin one-half Heisenberg ferromagnet in

which the exchange interactions deviate randomly in strength from the mean interaction.
Disorder produces a low-energy peak and a high-energy tail in the density of spin-wave
states for a simple-cubic geometry. The ferromagnetic Curie temperature is shown to
decrease linearly with disorder; the temperature-dependent magnetization is not other-
wise markedly altered.

The phenomenon of ferromagnetism in amor-
phous solids has been observed experimentally
in several systems' and has been the subject of
some theoretical analysis. m ' Substitutional im-
purities in crystalline ferromagnets have re-
ceived attention, s'~ and a molecular-field treat-
ment of amorphous ferromagnetism has been
given by Handrich. ' This Letter deals with the
effects of distributed disorder on the properties
of a spin one-half Heisenberg ferromagnet. The
disorder is introduced by allowing the exchange
interactions between spins to deviate randomly
in strength from the mean interaction. The dis-
tribution of exchange integrals can, to the order
of this calculation, be characterized by two pa-
rameters: the mean interaction (for each sepa-
ration on the lattice) and the mean square devia-
tion from the mean. Temperature-dependent
double-time Green's functions have been used to
determine the density of spin-wave states, the
ferromagnetic Curie temperature, and the tem-
perature-dependent magnetization as functions

of disorder.
A spin one-half Heisenberg ferromagnet in

zero magnetic field can be represented by a
Hamiltonian of the form

3C = 2P J(f,g) [nz-bf~b, -nzn, ],
f.t'

where the Pauli spin operators (bf, bf~) obey the
commutation relations

and

[b~, b ~]=(1-2n )b~,

n, =b ~b

(2)

is the spin deviation operator for the gth site.
J(f,g) is the (positive, ferromagnetic) exchange
interaction between the spins at lattice sites f
and g. For a perfect crystal, J(f,g) would de-
pend only on the displacement (f-g); in the pres-
ent treatment, with distributed disorder, the
translational symmetry is absent.

Following Zubarev' we define the double-time
temperature-dependent Green's function, and
its time Fourier transform, by

Gi,(t-t') = «bf(t); b,~(t')))= f „Ci,((u) exp[-i(e(t-t')]d(u. (4)

The equation of motion for G introduces high-order Green's functions; we decouple the hierachy of
equations by using the approximation'7

«"h(t) b,(t); by'(t ')» = —.'(1-o)«b, (t); by~(t') &&,

where the magnetization

o =1-2&n)

is treated as site-independent. o is to be determined self-consistently from the so-called "imaginary
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part" of G,

ImG —= lim i[G(w+ ie)-G(&u-ie)],

according to the equation'

—,'(1-o) = f „d~N 'TrlmG(tu)[exp(P~}-I]

-The equation of motion then takes the form

2~+„[6,„$(&u/o) 2+-„Z(g, h, )j+ 2J(g, k)]G„~((o)=6,f, (9a)

or in simpler notation,

AG =1.

From Eq. (9), the diagonalized form of G for a
specific disordered system must be

a81

2w ((u/o B)'-

where the quantities B are the eigenvalues of
the matrix B whose configuration space matrix
elements are

B,„=2+„Z(g, Ii,)5,„-2J'(g, h).

The spin-wave energies are proportional to the
magnetization 0. The number of spin-wave
states per unit energy may be obtained from the

imaginary part of G:

ImG 8((u) =5 „s5(ar/o B), -
so that

I of spin-wave states, Curie temperature, and

magnetization for the disordered system.
To obtain (G) we decompose the A matrix into

two parts

where I" depends only on the mean exchange in-
teractions and is the Green's function for a "cor-
responding perfect crystal, " to be defined more
exactly below, while 6 contains all deviations of
the exchange interactions from their mean val-
ues. It is then easy to show that

so that the ensemble-averaged G obeys a "Dyson
equation"

(G) = I"+ I'Z(G},

and can be expressed in terms of the "self-ener-
gy" Z as

N 'TrImG =N 'g 5(e/o-B ) —=g((o/o), (13) (G) = (1-1Z) il'. (18)

the "density of spin-wave states. " It is easily
seen that g(x) is normalized,

fg(x)dx = 1, (14a)

and that its centroid,

Jxg(x)dx =N 'TrB, (14b)

depends only on the average coupling. Moreover,
the Curie temperature, at which the magnetiza-
tion vanishes [see Eq. (8)], is inversely propor-
tional to

g(x)dx 1) 1 2m

x N B„N (14c)

For a perfect crystal the solution to Eq. (9) can
be obtained by a Fourier transform to the recip-
rocal lattice space. In a disordered system we

must perform a suitable ensemble average over
systems with similar disorder to obtain an ex-
pression for the ensemble-averaged Green's
function (G, z). From (G) we can derive a density

The decomposition of A is chosen to make the
ensemble average of the fluctuation matrix (h}
vanish. Thus, we write the exchange integral
Z(f, g) as

~(f, g) =~'(f-g )+j (f, g), ' (19)

where J'(f-g) is the ensemble average of the

exchange coupling between spins at sites whose
vector separation is (f-g) and j (f,g) is the de-
viation from this mean value. I is then the
Green's function for a perfect crystal with cou-
plings J'(f-g).

The distributed disorder we consider is as-
sumed to be such that deviations from the mean
of couplings between different pairs of sites are
uncorrelated —an assumption which would be in-
appropriate for describing, e.g. , substituted
magnetic impurities. For simplicity we also as-
sume that fluctuations are symmetric about the

mean, so that ensemble averages of odd powers
of 6 all vanish. We can then approximate the
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FlG. 1. Density of spin-wave states. Number of spin-
wave energies at E' vs & for a simplecubic lattice with

varying disorder. The energies are proportional to the
magnetization o in this approximation so that E /a is
temperature independent. The disorder parameter P
is proportional to the mean™square fluctuation of the
couplings about the average coupling strength.

«), = [(r,) -'-~,'l-'. (21)

These results have been applied to isotropic
systems with nearest-neighbor interactions.
When all spin sites are equivalent (as in cubic
lattices, for example), the two parameters are
the average nearest-neighbor exchange, J„and
the mean-square deviation j . The latter is in-
troduced through the ensemble averaging:

(j(f,g)j(A', ~)) =j'[&g, &,p+ ~f, &„). (22)

For these systems the dependence of the Curie
temperature on disorder is found to be linear in
the mean-square deviation:

Tc = T,[1-(2/ )jz'/J, ' J, (23)

where z is the number of nearest neighbors for
each site.

For the case of a simple cubic lattice, the
averaged Green's function, spin-wave state
density g(x), and magnetization o(T) have been
calculated, using Eqs. (8), (13), (20), and (21).
The results are illustrated in Figs. 1 and 2. The
disorder parameter I' with which the curves are

self-energy as

z= z'= (~r~).
This is equivalent to replacing ((r&)'") by ((r&)')"
in the ensemble average of the iterated solution
to Eq. (8). Since ensemble-averaged quantities
are translationally invariant, I', (G), and Z' are
all diagonalized by a space Fourier transform,
and Eq. (18) becomes

labeled is simply

P —j2/3 J 2 (24)

a measure of the width of the distribution of in-
ter actions.

The density of states is seen to change marked-
ly even for rather small disorder. The striking
features are (1) the appearance of states at ener-
gies above the band-edge for the crystal, (2) the
emergence of a low-energy peak in the state den-
sity, and (3) the decrease in state density for en-
ergies in the upper half of the original bands.
It should be observed that in spite of these shape
changes the mean energy remains unaltered.

The predominant effect of disorder on the mag-
netization is the Curie-point depression, which
varies linearly with the disorder parameter.
Since even in the disordered systems the magne-
tization curves have zero slope at T =0 and

(negative) infinite slope at T= Tc, there are no
marked shape changes, even for high degrees of
disorder. For a given ratio of T/Tc the magne-
tization decreases slowly with increasing disor-
der —the curves are merely flattened slightly
from the perfect crystal shape.

The approach outlined in this Letter is being
extended to include the effects of external mag-
netic fields and of higher spins (using treatments
similar to those of Callen' and Praveczki'). Also
under study are the results of using alternate
schemes7 for decoupling the Green's function
hierarchy. These extensions, with details of the
calculations, will be reported elsewhere.

~S. Mader and A. S. Norwick, Appl. Phys. Lett. 7, 57

FlG. 2. Magnetization of a disordered ferromagnet.
The magnetization 0. is plotted versus temperature T
for various disorder parameters P. T0 is the ferromag-
netic Curie temperature for a system with no disorder.
The Curie-point depression is proportional to I .
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A new strong-coupling diagrammatic perturbation treatment of the Anderson Hamilto-
nian confirms in finite order Kondo divergencies for the partition function, associated
with an effective s-d coupling J as predicted by the Schrieffer-Wolff transformation.
This holds true also for the symmetric case. By summing the diagrams with two con-
duction-electron intermediate states in the limit U- ~, a Kondo temperature with J
near diverging is obtained.

Similarities between the physical properties of the Anderson and the s-d exchange Hamiltonians for
dilute magnetic alloys were suggested when Schrieffer and Wolff established the approximate equiva-
lence of the two models most elegantly by means of a canonical transformation. Other approaches,
confirming this equivalence, have been based on finite-order perturbation theory. "However, recent
treatments of the Anderson model by means of the Green's functions equations-of-motion decoupling
scheme" seem to show some important differences between the two models. In particular, Ref. 5 ob-
tains a value for the effective s-d coupling J which is half the value of the J in the Schrieffer-Wolff
transformation. ' In Ref. 6 it is proven that the decoupled equations of motion lead to vanishing of all
Kondo singularities in the symmetric case e„+&U =0.' Since for that particular case the Green's func-
tion perturbation theory carried out in Ref. 4 breaks down, while the functional-integral approach
leads to the usual Kondo effect, the situation is sufficiently unclear to be re-examined from the view-
point of direct perturbation theory.

For that purpose we follow Scalapino' up to his Eq. (4), which we rewrite as

Z/Zo=1+ Q f dA, f dA. 2.. ~ ~ f dA. „Q ~ ~ ~ V~) ~ - ~ V) (
n= S

x (k-electron operators)(d-electron operators).

where the second sum extends over momenta, spins, and all sequences of n d-electron and n k-elec-
tron operators. The first bracket, representing the normalized thermodynamic expectation value of
the 4-electron operators written in the interaction representation, can be evaluated in the usual way,
using Wick's theorem for thermodynamic averages. Wick's theorem cannot be used for the second
bracket since the zero-order d-electron Hamiltonian H„' contains the part Un„&n„&. Evaluating the
trace in the second bracket in the representation where H, is diagonal, we obtain

(d-electron operators) =no(00 f
~ ~ ~ c~, (X,.) ~ ~ c~,. (X,) ~ ~ /00)+n~t(01( ~ ~ ~ c„,(X,.) ~ ~ c„, t(X„)~ ~ ~ /10)

+n~ &(10~ ~ ~ ~ c~, (a,.). ~ ~ c~,.~(X„)~ ~ ~ ~01)

+n„(11I.~ ~ c„(x,.). ~ .c„.(X, ) ~ ~ ~ ll1).

Here n„n„&, n«, n„~ are the occupation probabilities for the corresponding d states (see Scalapino ).
Taking the set of d-electron operators c«(A.,)c«(X,)c«(X,)c,&(A.,)c,&(A.,)c,

&
(A.,) as an example in

672


