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The band-matching approach has been used to calculate low-energy electron-diffrac-
tion intensity curves for the basal cleavage plane of beryllium. An approximation to the
exact theory, made possible by the presence of strong inelastic scattering, has enabled
these curves to be calculated very rapidly for general angles of incidence and with a de-
tailed, nonlocal potential with no adjustable parameters. There is striking similarity
between the calculated intensities and the detailed experimental work of Baker.

The potential applicability of low-energy electron diffraction in determining the structure and elec-
&zonie properties of crystal surfaces has stimulated the recent development of a number of theoreti-
cal"ayproaches to the problem. ' ' In general, the scattering by the atoms in the crystal is expressed
in terms of a potential or phase shifts and the scattered intensities are discussed as a function of both
incident energy and angle. The major difficulties encountered in such calculations arise from the
complexity of the computation, which has restricted the calculations either to fitting procedures with
oversimplified potentials or to a single angle of incidence. In this Letter, we describe a band-match-
ing method for the calculation of ref lectivities using a detailed, nonlocal potential for beryllium. In-
elastic effects, whose importance has been emphasized recently, "are included without adjustable
parameters. Important advantages of the method are the speed of computation and its applicability to
arbitrary angles of incidence. The calculated intensities show marked agreement with recent experi-
mental data over a range of incident angles.

In the band-matching approach to low-energy electr oil-diff 1'Rctlon (LEED) IIltellslty calculations~ the
wave function inside the crystal is expanded in terms of three-dimensional propagating and exponen-
tially damped Bloch waves and the wave function and its slope are matched at the surface to the inci-
dent- and scattered-electron plane waves. For both sets of states the crystal momentum (up to a sur-
face reciprocal lattice vector) and the energy are conserved.

The wave field outside the crystal is expanded:

q o=e'"'+ g a, exp[i(R,.'+K"+g,.") r],
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Inside the crystal,
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where E is the energy of the incident beam, gj" the surface component of the jth reciprocal lattice
component, K' the parallel component of the incident beam, Aj the expansion coefficient of outside
plane waves, and C,. the expansion coefficient of the Bloch functions. (A,.(' is proportional to the inten-
sity of the jth reflected beam. If 4 and 4o, and their derivatives, are matched at the surface, we ob-
tain

where T 1ndleates the eo1 responding column vector and

The summation over ~ includes all Bloeh-state expansion coefficients 8,. along a reeiproeal lattice rod
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normal to the surface. If the term (P+Q) ' is formally expanded and multiplied by (P-Q), the follow-
ing exact expression for the reflection coefficients in the (00) specularly reflected beam is obtained:

Q, [I, ~(u,."+a,. )]a,&'- i '
ZnRlnLn 1++nixR1nLnpLix1+ x Lij (~ ij) x. & x. '& ~ Ix. & xx. xL x -Lx1 xx o, i x (1)

where the plus sign is taken for L and the minus

sign for R. A similar expression exists for the
other beams. This expansion suggests a scatter-
ing interpretation which can be clarified by in-
spection of the terms L„.and R„.. In particular,
in the limit of small elastic and zero inelastic
scattering the values of R,„(L„)are.of the order
of unity for a Bragg (Laue) excitation from beam

j to l and zero otherwise. Although not strict
selection rules, they indicate qualitatively the
size of the terms. For example, if conditions
are such that both Ry and L„,are large, i.e.,
there is an appreciable amplitude for both a
Bragg and a Laue reflection in the same beam,
there will be a large effect on the amplitude of
the specularly reflected beam A, .

lf expansion (1) is truncated after the second
term, we have the approximation adopted here
for second-order scattering only (SOSO). Con-
sistent with this second-order approximation to
the infinite series, the coefficients in the term
R» are calculated to second order by perturba-
tion theory and those in Ry L y to first order.
The calculation proceeds very rapidly, and even
with a complicated nonlocal potential an inten-
sity curve of 100 points from 0 to 200 V requires
only one minute on an IBM 360-67 computer. An

important consideration is the presence of a
large inelastic term which results in realistic
values of the peak widths and ref lectivities and

which effectively removes the singularities in
the perturbation matrix elements. The method
is approximate, but the second-order calcula-
tions do not differ greatly from those to first or-
der and the conditions for its applicability, name-
ly, a weak elastic scattering potential and a
strong inelastic scattering are, we believe, met
in beryllium.

Beryllium has been chosen because (1) we have
detailed experimental information collected at
liquid-nitrogen temperatures. ' (2) The ls core
wave function is localized near the nucleus and
is well described by a simple analytic spherical-
ly symmetric function. Resultant integral. s
can therefore be evaluated in closed form. (3) Re-
cent Fermi-surface measurements and band-
structure calculations are available.

The contributions to the potential seen by an
incident electron are the following: (a) the core
potential due to the nuclear charge plus the core
electrons. This can be computed analytically or
we may use tabulated values. " The differences
are negligible. (b) Core-plane-wave exchange.
Here we have adopted a modification of the Slater
approximation which takes into account the non-
orthogonality of the core states and plane waves. "
This term is k dependent and vanishes at high en-
ergies as it should. It is comparable in magni-
tude with Slater exchange at low energies.
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FIG. l. Each curve is labeled by an energy E in electron volts. The ordinate is the matrix element (kIVQ+g)

(form factor) for which the abscissa g is chosen so that both k and k+g lie on the constant-energy surface E.
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(c) From the calculations of Loucks and Cutler, "
the conduction electrons in beryllium are well
approximated by R uIllform chaI'ge distribution
and will mainly affect the diagonal terms. The
conduction electrons give rise, however, to the
screening of the final off-diagonal elements. %e
include this effect by using the Hartree dielectric
function. (d) The orthogonaiization term, which
converts the potential to a pseudopotential, is
taken in the form discussed in detail by Pendry"
with resultant pseudopotential

V~, = V-E„~ls}(ls~.

For E„we could take the free-atom is level,
but we have adopted E„a,s a disposable parame-
ter and have least-squares fitted our matrix ele-
ments at the Fermi energy to those obtained by
Tripp, Everett, Gordon, and Stark" from Fermi-
surface measurements. In fact, the fitted E„
(8.953 Ry) is close to the free-atom value (8.698
Ry). The form factors of the above potential are
shown in Fig. 1.

For the diagonal terms we average terms (a)
and (b) over the atomic volume and find that the
result is very close to the average potenti. a,l en-
ergy of a uniform distribution over that volume
of positive charge equal to the valence. Since

the conduction electrons are to a good approxi-
mation uniform, the result is a, system which
closely approximates the jellium model used in
the random-phase-approximation self-energy
calculations of I undqvist. " %e have adopted his
calculated values.

Calculations have been carried out using the
potentlRl described Rbove The matching plRne
is taken midway between two atomic planes and
the real part of the self-energy is set equal to
zero. The latter can be justified by noting that
a sharp discontinuity in the inner potential at the
suI'fRce pI'oduces 1n the cRlculRt1on R bRck 1e-
flection which interferes with the reflected
beams. Although the overall ref lectivities are
not significantly changed by this step, the de-
tails of the calculated curves RIe. The real situ-
ation is somewhat different. In particular, the
potential near the surface falls off to zero rather
smoothly over a distance of a few angstroms.
This will result in a decreased step reflection
and hence a reduced perturbation in the reflected
beams. Setting the real part of the diagonal ma-
trix element to zero effectively eliminates this
spurious reflection, the shift in the electron en-
ergy due to the inner potential being taken into
account by shifting the energy scale by an amount
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FIG. 3. Direct comparison of theory and experiment for 8 =4', 10', and 16 . Experimental results due to Baker,
Ref. 8.

equal to the average of the inner potential. A
more rigorous solution would be to describe the
space as three regions —bulk, surface, and vac-
uum —and perform the matching calculation at
the two interfaces. Such a calculation, in which
the potential in the bulk is continued smoothly to
zero through the surface region, is presently be-
ing carried out.

In Figs. 2 and 3 the results of our calculation,
in which each Bloch wave is expanded in terms
of 90 plane waves by perturbation theory, are
compared with the experimental results of Bak-
er. ' We note several marked similarities. A
Bragg peak at 180 eV becomes less intense as 8
increases, a very prominent peak at approxi-
mately 90 eV appears near 8=12', a weak peak
appears at low energies (-30 eV), and the split-
ting of both the first Bragg peak and the peak
near 150 eV as 0 increases.

The speed of computation has enabled us to ex-
amine in some detail the effect of changes in the
crystal potential on the calculated intensities.
We may discuss, for example, different approxi-
mations for core-plane-wave exchange, the use
of the free-atom value for E„, and the results
of changing the absorptive term in the potential.
In general, the features such as peak position
and width do not change greatly, though the ab-
solute intensities are rather sensitive to the de-
tails of the potential. An extended discussion of
this and other aspects of the theory will be given
elsewhere.

The experimental results and the interest of
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Wilkins for helpful discussions, and Dr. E. G.
McRae for comments on the manuscript.
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A criterion for localization of electron states in disordered materials is presented.
Applications to binary alloys, made using the self-energy calculated in the coherent-
potential approximation, confirm the Mott-Cohen-Fritzsche-Ovshinsky model in detail.
Mobility edges occur inside the band edges. A mobility gap can appear within the band.
The band can split into sub-bands, each with mobility edges. Below a critical concen-
tration, an Anderson transition, where the minority sub-band becomes entirely local-
ized, can occur.

Considerable effort has recently been devoted
to calculation of the densities of states in differ-
ent disordered materials. ' 3 In particular, the
case of substitutional disorder has been brought
to a quantitative level of understanding of the den-
sity of states through the application of the co-
herent-potential approximation (CPA)' to binary
alloys. ' Nevertheless, understanding of the
nature of the wave functions in disordered mate-
rials has remained at the qualitative level ex-
emplified by the Mott-Cohen- Fritzsche-Ovshin-
sky (MCFO) model. "That model assumes the
existence of regions of exclusively localized
states separated by critical energies, ' termed
mobility edges, from regions of exclusively ex-
tended states.

In a recent paper' based on Anderson's statis-
tical approach, ' the formal theory' "supporting
the MCFO model has been reviewed and extended
to the point where it has been demonstrated that
a function E(z) exists such that E (1 in the re-
gions of localized states, I) j. in the region of
extended states, and E(z, ) = 1 at the mobility
edges &,. Moreover, a significant step towards
a quantitative determination of &(E) has been
taken by relating +(E) to properties of the aver-
age Green's function. Using this relation one
can easily prove that when the average Green's
function is translationally invariant with a 4-in-
dependent self-energy, Z(z), F(E) is then given

by

+(E)=(max, IE(k) I&/Iz —Z(z) I,

where E(k) is the band structure corresponding

to the average Hamiltonian. Formula (1) has
already been applied' to the specific case of a
Lorentzian distribution of single-site energies,
and exact quantitative results have been obtained
for E, .

The first purpose of this paper is to present
as a conjecture the generalization of criterion
(1) to all disordered systems which are transla-
tionally invariant when averaged Iso that the self-
energy becomes diagonal in k, Z=Z(k, z)]:

~(z) =/max, IE(k) I/Iz -z(k, z) I).

Second, we combine this criterion (1) with the
approximate self-energies available through the
CPA' to obtain quantitative predictions of the
character of the eigenstates in binary alloys.
The self-energy is k independent in the CPA. We

may therefore use (1), and errors will arise only
from inaccuracies in the CPA values for Z. Such
errors in Z, on entering E(E), have the effect
only of shifting the values of E, found; corre-
sponding errors in a mobility calculation lead
to finite mobilities within a region of states
which are actually localized.

For the calculations reported in this Letter,
we consider a binary substitutional alloy A„B,
in which there is a single Wannier function as-
sociated with each site. In the Hamiltonian,

the diagonal elements, e, , take on two values
e" and ~~, on A and B sites, respectively, while
the off-diagonal elements are translationa11y in-
variant. We shall define a scattering strength,
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