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VACUUM-ULTRAVIOLET LASER ACTION OBSERVED IN THE LYMAN BANDS OF
MOLECULAR HYDROGEN

R. T. Hodgson
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598
(Received 5 June 1970)

Stimulated emission has been observed in the P-branch lines of the 3-10, 4-11, 5-12,
6-13, and 7-13 Lyman bands (' ", B!Z,*—~X 12 _*) of molecular hydrogen near 1600
A. Light pulses of approximately 2 nsec duration and 1.5 kW maximum power were pro-
duced using a Blumlein parallel-plate transmission line discharging through hydrogen
gas at pressures between 20 and 150 Torr.

The first observation of stimulated emission
in the vacuum-ultraviolet spectral range is re-
ported in this Letter. The wavelengths of the
laser light near 1600 A are the shortest wave-
lengths achieved to this time, and the pulse pow-
er and energies available should make this type
of laser useful for studying the interaction of
high-energy photons with matter.

The lasing action is produced by inverting the
population of an excited electronic state of a
diatomic molecule with respect to the high vibra-
tional-rotational levels of the ground state. This
general scheme was in fact proposed by Bazhulin,
Knyazev, and Petrash' in 1965. Figure 1 shows an
energy-level diagram of the hydrogen molecule.
A fast electrical discharge in hydrogen gas was
used to excite the B'Z* vibrational-rotational
levels. The dashed vertical lines represent the
electron-collision-induced transitions between
the zeroth vibrational level of the X ‘Zg+ ground
state and the v’ levels of the upper states. Since
the high-energy electron collisions populate the
electronic states much more efficiently than the
upper vibrational levels of the ground state, in-
version densities and gain were high enough to
produce stimulated emission without mirrors in
P-branch lines of the 3-10, 4-11, 5-12, 6-13,
and 7-13 Lyman bands (B'Z *—~X 1ZJg"). These
transitions are indicated by the solid vertical
lines in Fig. 1.

In order to generate the high-power fast-pulsed
electrical discharge needed to produce a large
inversion and high gain at vacuum-ultraviolet
wavelengths, ‘a Blumlein circuit parallel-plate
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strip line and discharge channel similar to that
desc¢ribed by Shipman® was constructed. Figure
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FIG. 1. Potential energy curves for the X! Zg *
Bl's,*, andC 11'[ states of the hydrogen molecule
The potential energy in electron volts is plotted as a
function of internuclear distance in A.
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FIG. 2. Blumlein circuit flat-plate transmission line
and discharge-tube arrangement. Electrode dimen-
sions are 40x80 cm?, 0.040-cm Mylar was used as the
dielectric to hold off 30 kV dc. Torr-seal epoxy was
used to cement the 23-cm mesh between the two glass
plates forming the sides of the discharge channel.

2 shows the experimental arrangement. The dis-
charge was contained in a 120x1.2X0.04 cm?®
channel made by sandwiching the high-voltage
current-carrying electrodes between two long
thin glass plates. Stainless-steel mesh was used
for these electrodes so that the cut edges would
provide lines of sharp metal points in the gas to
make the breakdown and discharge more uniform.
A single mechanically ruptured solid dielectric
switch was used to initiate the discharge.

Figure 3(a) shows a spectrum of the laser
emission taken in the first order using a McPher-
son model 225 1-m normal-incidence vacuum
monochromator equipped with a film holder and
a 1200-line/mm grating. Wavelengths were mea-
sured absolutely to within 1 A using a zero-order
mark and the monochromator setting. Relative
wavelengths agreed to within the 0.05-A measur-
ing error with Herzberg and Howe’s* measured
wavelengths for the assigned lines.

The stimulated emission spectrum shown in
Fig. 3(a) and the microdensitometer trace shown
in Fig. 3(b) can be explained using Spindler’s®
published Franck-Condon factors for the molecu-
lar hydrogen Lyman band intensities in conjunc-
tion with the intensity and selection rules for J’
—~J” transitions within each band.®

The probability of exciting a hydrogen molecule
in the v” =0 level of the X'Z,* ground state to a
given vibrational level v’ of the B'Z,* state is
proportional to the v’-0 Franck-Condon factors.
These factors increase® with v/ until they reach
0.074 at v'=7. For each v’, the probability of
exciting the various rotational levels can be pre-
dicted since excitations of odd-to-odd rotational
levels are forbidden by symmetry.® Thus, since
two-thirds of the hydrogen molecules are in the
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FIG. 3. (a) Stimulated emission spectra showing
some of the P-branch lines of the 3-10, 4-11, 5-12,
6-13, and 7-13 Lyman bands (B 1Eu”-*XiE)g;’) of molec-
ular hydrogen. (b) Microdensitometer trace of this
spectrum. Some of the missing R (1) line positions are
also noted along with their corresponding P (3) lines.

X lzg+, v”=0,J”=1 orthohydrogen state® in equil-
ibrium at room temperature, we would expect
most electron collisions to populate the v/, J'=2,
and J’ =0 levels of the higher-energy electronic
states. If the electron-collision transition proba-
bilities are determined by the same statistical
weight arguments as the optical transition proba-
bilities, the ratio® would in fact be 2:1. Now, the
J’=2 levels can only radiate to the J”=3 or the
J”=1 levels of the various ground electronic vi-
brational states [the P(3) and R(1) lines of the
bands]. The branching ratio® for emission from
these lines is determined by the statistical weights
of the rotational levels and is numerically equal
to 1.5:1 for the P(3) and R(1) lines. In fact, only
a single P(3) line from each J’=2 level is seen,
and that line belongs to the band with the largest
Franck-Condon factor. This perturbation of
emission intensities from that seen in spontaneous
emission proves that the J’=2 states have been
stimulated to emit in the P(3) lines. With highest
discharge powers, sufficient population builds
up in the J’'=0 level of the v'=5 and 6 vibrational
states and the J'=1, v’=5 level that emission is
stimulated in the P(1) lines of the 5-12 and 6-13
bands, and in the P(2) line of the 5-12 band.
Estimates of laser energy, pulse length, and
power were made by converting the ultraviolet
pulses to visible radiation using fluorescent
scintillators coated on the inside of the discharge
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FIG. 4. (a) Fluorescence intensity of sodium sali-
cylate coated on the inside of the discharge tube win-
dow when excited by a hydrogen laser pulse at ~1600 A.
(b) Fluorescence intensity of the sodium salicylate
coating when excited by a nitrogen laser pulse at
3371 A. (c) Fluorescence intensity of BBO excited by
a hydrogen laser pulse. (d) Intensity of N, laser pulse
measured directly as a function of time with no fluores-
cent window in place. The measuring apparatus rise-
time is less than 3 nsec. (e) Fluorescence pattern
observed with H, laser pulse. (f) Fluorescence pattern
observed with N, laser pulse. The 3371-A light can
pass through a gap in the scintillator coated on the in-
side of the window, through the Pyrex, and excite the
scintillator coated on the outside. Horizontal scale:

1 div=>5 nsec.

tube window. Figures 4(a) and 4(b) can be used
to compare the response of sodium salicylate ex-
cited by the ~1600-A light pulse [4(a)] with that
excited by a 3371-A light pulse from a molecular
nitrogen laser [4(b)]. A trace of the intensity of
fluorescence excited in BBO (2, 5-dibiphenyly -
loxazole) reproduced in Fig. 4(c) shows the hy-
drogen laser pulse shape more clearly than the
sodium salicylate because its fluorescence life-
time is of the order of 1 nsec.” The nitrogen
laser pulse height and width were directly mea-
sured with a biplanar photodiode, and intensity-
versus -time traces such as that given in Fig.
4(d) were used to calibrate the response of the
sodium salicylate to fast light pulses of 3371-A
wavelength. Since the quantum efficiency of the
scintillator is constant® between 400 and 3400 }G\,
the total energy contained in the hydrogen laser
pulse could be estimated to be about 3 puJ.

The pulse energies plotted as a function of hy-
drogen pressure showed a broad maximum near
60 Torr. At about 20 and 150 Torr, the fluores-
cent intensity dropped below the detection level
of our TRG 105B, S-20 response, biplanar pho-
todiode, and Tektronix 119 oscilloscope combina-
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tion.

The pulse length was estimated to be ~2 nsec
by measuring the risetime of the sodium salicy-
late fluorescence. These estimated values of en-
ergy and pulse length correspond to a power of
1.5 kW.

Photographs of the fluorescent patterns of the
two laser beams are given in Figs. 4(e) and 4(f).
They appear similar except that the 3371 -A laser
light can pass through a gap left in the inside
fluorescent coating, through the Pyrex window,
and excite a fluoresent strip coated on the outside
of the window in a position complementary to the
gap in the inside coating.

Stimulated emission was proposed initially by
Bazhulin, Knyazev, and Petrash® on the C'Il,
-X IEg* Werner band transitions in hydrogen in
the 1100-A region. They pointed out that a dia-
tomic molecular system with the minimum of
the ground-state— and excited-state—potential
curves at different internuclear distances im-
plied large probabilities of emission to high vi-
brational levels. Ali and Kolb® simulated the dis-
charge parameters of Shipman’s?® device with a
computer, and predicted lasing action on the
Werner bands in the region 1025-1239 A, They
did not treat the excitation of the B 'Z," in de-
tail. In fact, the Franck-Condon factors for the
Lyman bands are lower than for the Werner
bands. In the discharge, however, more elec-
trons have sufficient energy to excite the B 'Z 7,
v’=1-7 vibrational levels than the C 'II, state
since the threshold energies are smaller, This
would explain the fact that no stimulated emis-
sion on the Werner bands is seen, and that the
power output in the v’ =T band is less than the »’
=5 band.

Stimulating discussions with P. P. Sorokin and
J. A. Armstrong, and the technical assistance of
S. Baliozian are gratefully acknowledged.
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MEASUREMENT OF SPECTRUM OF TURBULENCE WITHIN A COLLISIONLESS SHOCK
BY COLLECTIVE SCATTERING OF LIGHT

C. C. Daughney, L. S. Holmes, J. W, M. Paul
United Kingdom Atomic Energy Authority, Research Group, Culham Laboratory, Abingdon, Berkshire, England
(Received 3 April 1970; revised manuscript received 31 July 1970)

We present experimental evidence for the presence of current-driven ion-wave turbu-
lence within a collisionless shock. The frequency and wave-number spectra of this tur-
bulence have been measured by scattering light from the shock front. These measure-
ments are compared with the assumptions and predictions of nonlinear theory.

Shock experiment. —We are studying®™® a colli-
sionless shock with low Alfvén Mach number (M 5
<3), which propagates perpendicular to a mag-
netic field. The shock is produced by the radial
compression of an initial hydrogen plasma by a
linear z pinch. The initial plasma conditions (n,,
=6.4x10®m™3, T;,=T,,=1.2 eV, B,;=0.12 T)
and the shock parameters (M ,=2.5, V=240 km
sec™!, L,=1.4 mm) have been described previ-
ously. The electron heating within the shock (T,
=44 eV) implies a resistivity which is two orders
of magnitude larger than the Spitzer value; the
corresponding effective electron collision fre-
quency v*~3 GHz.

The compression of the magnetic field in the
shock front gives rise to an azimuthal current
with an electron drift velocity V,>C,, the ion-
sound speed. Linear stability theory* ® predicts
current-driven ion-wave instability, while non-
linear theory” predicts ion-wave turbulence.

Scattering experiments. —We have previously® 3
measured a suprathermal level of ion-wave fluc-
tuations within the shock front. The measured
level, about 400 times thermal, agrees with that
required by a stochastic model of the electron
heating.

We now report measurements of the wave-num-
ber (k) spectrum and the frequency (w) spectrum
of these ion-wave fluctuations, using essentially
the same technique of scattering ruby-laser
light.,*87° This yields the Fourier transform of
the electron density fluctuations in the form
S (w, k) «c(6n,2(w, k), with S(K)=[S(w,k)dw and
Spw)=S(w, k) for constant k.

In the experiments light is scattered from a 50-
mW ruby-laser beam during the transit of the
shock through the beam. The pulse of scattered

light is detected by a photomultiplier, either di-
rectly or after spectral resolution. The geome-
try of the incident- and scattered-light paths de-
fines a mean wave vector k,, with |2, |~1/xp,,
(A\p, is Debye length for mean shock conditions)
and with kK, in the (v, 8) plane at an angle ¢ to
the azimuthal electron current in the shock front.
Spectrum S(ﬁ). —The observations are made
through a window which is covered by different
masks in order to vary either the scattering an-
gle within the range 3.3°<6<6.9° and hence |#|,
or the scattering plane within the range —16°<¢
<+16°, Over this range of ¢ the scattered signal
is independent of ¢ to an accuracy of +15%,*
The dependence of S(k) on |k| is shown in Fig. 1;
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FIG. 1. Wave number spectrum S(k): Experimental
points are mean of five measurements and error bars
are standard deviation of the mean. The curve is a
Kadomtsev spectrum.
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FIG. 3. (a) Stimulated emission spectra showing
some of the P-branch lines of the 3-10, 4-11, 5-12,
6-13, and 7-13 Lyman bands (8'Z,*—~X'Z,*) of molec-
ular hydrogen. (b) Microdensitometer trace of this
spectrum. Some of the missing R (1) line positions are
also noted along with their corresponding P (3) lines.
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FIG. 4. (a) Fluorescence intensity of sodium sali-
cylate coated on the inside of the discharge tube win-
dow when excited by a hydrogen laser pulse at ~1600 A.
(b) Fluorescence intensity of the sodium salicylate
coating when excited by a nitrogen laser pulse at
3371 A. (c) Fluorescence intensity of BBO excited by
a hydrogen laser pulse. (d) Intensity of N, laser pulse
measured directly as a function of time with no fluores-
cent window in place. The measuring apparatus rise-
time is less than & nsec. (e) Fluorescence pattern
observed with H, laser pulse. (f) Fluorescence pattern
observed with N, laser pulse. The 3371-A light can
pass through a gap in the scintillator coated on the in-
side of the window, through the Pyrex, and excite the
scintillator coated on the outside. Horizontal scale:
1 div=>5 nsec.



