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Another satisfying feature of ~ is that the pecu-
liar BAs which has f; = 0 and a, large negative
value for p (making () positive) is right on the
curve of Fig. 2 along with say ZnSe which has
about the same positive & (but which arises from
the opposite situation p = 0 and large f;). This is
powerful evidence that ~ is truly a fundamental
measure of the total fractional acentricity. In
this light we can say that CuCl and InN which
have ()'s of =+75%, respectively, are about as
close to the maximum possible distortion (&
=+100%) and consequently the largest & (4X10
esu) one can get in these crystals before there is
a phase change' to a six-fold-coordinated struc-
ture.

In conclusion, we have shown the importance
of the acentricity produced by the displacement
of the bond charge off center. Without adjustable
parameters, this effect completely explains the
"anomalous" sign of ZnO and SiO, as well as the
very small value for & in BeO. It is very im-
portant to be aware of such possible cancella-

tions (i.e., () =0) if one wants to find materials
with large nonlinear coefficients.
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x = -1"g,s,.„--,'g, ,~„s,,s,.„ (1)

where 8,-„,8,, are spin-& operators and where
the sums extend over the points of a lattice.
This model corresponds to the pseudospin formu-
lation of phase-transition problems and may be
used to study order-disorder ferroelectrics with
a tunneling effect' or the magnetic ordering in
materials with singlet crystal-field ground
states. ' It is one of the simplest models where
a phase transition takes place at a finite external
field. There exists a phase boundary in the F-
T plane as shown in Fig. 1, where results cal-
culated by various methods for a simple cubic
lattice with nearest-neighbor interactions are
plotted. The curve is limited by the points I
= 0, T = T, (ising model) and T= 0, and I'= 1",,
where I, is the critical transverse field. In the
region above the curve the S, components are This series has been calculated up to n = 5 from

The phase transition in the Ising model has been studied as a function of an applied
transverse field, by Green s function and series-expansion methods. The critical in-
dices are probably independent of the applied field except at T = 0 where they appear to
be related to those of the Ising model in one higher dimension.

The Ising model in a transverse field can be disordered although (S,.„)c 0. The transverse
represented by the Hamiltonian field plays a role which is in many ways similar

to the temperature and the critical temperature
decreases as the field increases.

The system has first been studied using a
Green's function method, where the equations of
motion for the Green's functions were decoupled
by a scheme introduced by Callen' for the Heisen-
berg model. The high-temperature susceptibility
is calculated in a self-consistent way and diverges
at the critical temperature. The phase boundary
curve thus obtained is plotted in Fig. 1 (curve 3).
In the limit I -0 this approximation corresponds
to the spherical model of the Ising case.

A better result is obtained from a series ex-
pansion of the susceptibility8 in (PZ)", where P
= 1/kT:
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FIG. 1. Phase boundary curve in I'- 1' plape for a
cubic lattice with nearest-neighbor interactions from
(1) molecular field, (2) series expansion, (3) Green s
function method.

X=K„„(8) "-[ —.(8)1 "'" (4)

in the critical region. From the Pade approx-
imant we obtain the critical curve, either as
r, (8) or as T, (I') which is plotted in Fig. 1. y(8)
or y(I") may also be obtained and is plotted in

Fig. 2 for the simple cubic and quadratic lattices.

a thermodynamic perturbation theory' and dia-
grammatic techniques. The presence of the
transverse part in (1) makes the evaluation of
the diagrams more complicated than in the Ising
case and a computer has been used. The first
singularity of the series (2) was obtained for
eight different values of I"P using the Pade ap-
proximant method for both a simple cubic and
a quadratic lattice with nearest-neighbor inter-
actions. The calculation with fixed I P gives the
variation of X along a line through the origin in
the I-'-T plane. However, for this type of series
the nature of the singularity is independent of
the direction in which the critical curve is ap-
proached, provided it is not tangentially. If (2)
is expressed in polar coordinates O, r with

I"P = cot 8, (I'/J)'+ (1/PJ)' =r,
then

y is fairly constant at the valve in the Ising
model until 6 approaches zero where T, is be-
coming small. There it decreases and appears
to approach the value of y obtained for the Ising
model in one higher dimension.

The values of y obtained from a few terms in
the series are subject to a wide error and are
naturally suspect. In particular it has been con-
jectured' that y will depend only on the dimen-
sionality of the system and not vary continuously
with a parameter such as I". We have therefore
examined the situation near 0= 0 where the series
may be written

X =Z&„(8)(~/I')".

Near 0= 0,

&„(8)=&„(0)+c„e '""cot'8.
The form of the second term indicates a discon-
tinuous change of behavior as 8-0. For small
values of n this term is not important until finite
0 is reached, and this accounts for the change in

y at these values. We therefore believe that y
is constant over the whole range of I but changes
discontinuously at 8=0 (T, =0). This case T=0
has been studied from the ground state of (1).
The one-dimensional Ising model with a trans-
verse field and with nearest-neighbor interac-
tions has been studied by one of us' using the
method developed by Lieb, Schultz, and Mattis"
in similar spin systems. At T & 0 there is no
phase transition but at T=O the system remains
ordered up to I"= I', . The correlation function
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p„, = (8,,8, ,„,) has been calculated and is shown

to be equal to the correlation function obtained
in a row of spins in Onsager's solution of the
two-dimensional Ising model. The main result
is that the critical behavior of the Ising model
with transverse field in one dimension at T= 0
as a function of I is identical to the critical be-
havior of the Ising model without transverse field
(I'= 0) at finite temperature in two dimensions
as a function of T. In the first case the ground-
state energy corresponds to an eigenstate whose
degeneracy changes at I'= I",. In the second the
free energy depends on the eigenvector of the
transfer matrix whose degeneracy changes at
T= T, . A similar correspondence is seen in the
numerical values of y shown in Fig. 2 where for
dimension d at T= 0, I"= I", , y takes a value
y*(d) close to that of the Ising model in d+ 1
dimensions, y(d+1). We therefore studied the
ground state of (1) for a d-dimensional hyper-
cubic lattice by perturbation theory" both in the
ordered region r & I", where (8,,) is as expanded
in r/J up to the fourth term and in the disor-
dered region I"& I', where the correlation func-
tion G =Q„(8,,8, ,„,) and the energy of the low-
est excited state co, have been calculated up to
the fifth term as series expansions in J'/r. In
the vicinity of the critical field we suppose that
these quantities behave as

The series were analyzed using a Pade approx-
imant method to get r„P*, t, and f and the re-
sults are shown in Table I for several values of
d. These values are compared with appropriate
indices for the Ising model in a lattice of dimen-
sion 2+1. If we suppose that the correlation
function p„, (r)r -,= (S,,S, ,„,) for a lattice of
dimension d behaves in the critical region as the
correlation function p„, (T)r, for a lattice of
dimension 4+1, then p„, (I') —D(Kn)/(n' '+q),

y*(d) = y(d+1), P*(d) = P(d+1) (10)

are satisfied for d=1, 2, 3, and d very large.
Vfe have also found a relation between t and

y* through f because of the relation between G
and y. Following Falk and Bruch, "t is equal
to y for any value of I', except possibly at T=O.
Writing G = f 8(&u)d~, we have

X= f der S(&u)(1—e s )/~.

In the critical region and for T&0, S(&u) is a
narrow curve centered at u&=0 and thus y=PG.
But at T=0, (11) gives y= f cf&uS(&o)/~, and if
we suppose that 8(~) =a(co)6((o—a&,) (which is
exact only for the one-dimensional model), then
X =a((u, )/(u, = G/(o, and thus

y+ —
P +f (12)

From Table 1 we see that relation (12) is indeed
satisfied.

The correspondence between the behavior of
the system at T=0 as a function of I' for a
lattice of dimension d and the behavior of the
system at I = 0 as a function of T for a lattice
of dimension @+1seems valid for any dimension.
This analogy appears more reasonable in the
formulation of the d-dimensional Ising problem
by Schultz, Mattis, and Lieb'4 where the trans-
fer matrix used to express the free energy can
be written as the product of two matrices, exp V,
and exp V„where V, and V, are the transverse
part and the Ising partof the H.amiltonian (1)
of dimension d —1. A similar correspondence

where K-(r—I', )', and

G =Q„p„,(r) —fD(Son)n -'dn

-z-' ' "- (r-r )"&-' ' "&
C

But the exponents satisfy the scaling law" y
= v(2-71) and we therefore expect

1, (d) = y(d + 1)—v(d + 1).

Although there is some uncertainty due to the
limited number of terms in the series it appears
that (9) together with the relations

Table I. Critical exponents in various dimensions. Values of y, p, and v are taken from Refs. 8 and 16.

u*(d) u(d+ 1) t (d) p{d +1)-v(d+ 1) r,/~(0)

5/4
1.05

1

7/4
5/4
1.03

1

i/s
0.33
0.46
0.5

1/S
0.315
0.49
0.5

3/4
0.358
0.53
0.5

3/4
0.62
0.51
0.5

1
0.63
0.58
0.5

7/4
1.21
1.11

1

0.25
0.38
0.42
0.5

'Molecular-field approximation.
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exists between maximum eigenvalue and eigen-
veetor of the transfer matrix for the ferxoelec-
tric two-dimensional model" and the ground-
state eigenvector for the one-dimensional aniso-
tropic Heisenberg chain.

It appears from our work that the transverse
field changes the crltlcal temperatule without

changing the critical behavior until the cx'itieal
field is reached, when there is a sudden change
in the critical behavior at T=O which becomes
like the critical behavior of the Ising system
in one higher dimension.

*Work suppoI'ted by Centre National de la Recherche
Scientifique. On leave of absence from Laboxateire
de Physique des Solides, Faculte des Sciences,
Paris V, France.
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Transient absorption spectra produced by pulsed electron excitation at low texnpera-
ture have been identified as due to transitions originating in the lowest triplet states of
the self-trapped exclton. The cux'l ent Inodel~ coinprlslng an election plUs a self-trapped
hole, is shown to provide electronic configurations for the higher excited states which

give a good account of the principal features of the spectra.

Exciton self-trapping in simple halide lattices
is an established phenomenon. It gives xise to
broad-band, strongly Stokes-shifted lumines-
cence %'hlch hRS been studied ln alkallq ammo-
nium, ' and alkaline-earths halides. The se1f-
trapping can be attributed to the formation of a
covalent bond between two adjacent excited ha-
lide ions, and the resulting X2 molecular ion
provides metastable singlet and triplet states
with which the characteristic short- and long-
lived luminescent transitions can be reasonably
well explained. 4 In pure materials at low temper-
atures, a significant fraction of any enex'gy im-
parted to the electronic system is at some stage
stored in these states. The present work con-
cerns absorption spectra arising from the longer-
lived states of self-trapped excitons in several
alkali halides. The model with which the lumi-
nescent transitions have been interpreted will be
shown to furnish also a straightforward account
of the higher excited states involved in the ab-
sorption.

The basic experiment consisted of time-re-
solved measurements of absorption and emission
spectra produced by single-pulse excitation from
an electron souxce of 500 keV mean energy. The
apparatus has been described px'eviously. ' A nov-
el aspect of this system is the use of a light beam
which reflects internally at a low angle from the
crystal face being irradiated. This geometry
maximizes the light path through the irradiated
volume, which is thin (=0.5 mm) because of
the low penetration of the electron beam. For
more accurate spectral resolution, the system
was augmented by a simple rotating-mirror
scRnning device cRpRble of sweeping Rt rates up
'to 6 n111/Ilsec. Repetltlve excl'tRtlo11 Rnd R dlgltal
signal averagex were used when it was desired
to minimize the intensity of a given pulse in or-
der to hold transient heating effects to tolerable
level. ' The decay times under investigation fell
in the 10 '- to 10 2-sec range. No attempt was
made to observe the singlet self-trapped exciton
states since their lifetimes (1-10 nsec) are only


