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Compounds containing a first-row atom are shown to have an important additional con-
tribution to the nonlinear optical susceptibility d;~&. Inclusion of this effect explains the
anomalous sign of d33 for ZnO and leads to excellent agreement with experiment.

Recently Miller and Nordland' have measured
the absolute signs in a variety of nonlinear mate-
rials. They observed a remarkable change of
sign in d;,„between ZnO (d») which is negative
and the other measured semiconductors which
are all positive [e.g. , ZnTe (d„), CdS (d») GaAs

(d,4), etc.]. There are at least two reasons why
this result is surprising. First, the ionicity f, of.
ZnO is very similar to all the other II-VI's. Sec-
ondly, the bond-charge calculation' of nonlinear
optical susceptibilities which has been highly
successful in accounting for the magnitude and

signs of the normal III-V and II-VI semiconduc-
tors (i.e., GaAs, CdS, etc.) predicts the wrong
sign for ZnO.

Nevertheless, ZnO is unusual since there is a
large difference in size between the Zn and 0
atoms, (the Zn covalent volume' is about 6 times
larger than that of 0). In fact most compounds
containing a first-row element will be anomalous
because the covalent radii' r~ of first-rom ele-
ments are much smaller than those of any other
row.

The bond charge q will be situated very close
to the intersection of r and rg since this is
where the atomic overlap that produces q is a
maximum. When the bond charge is acentrically
located (i.e., ~„mrs) we will demonstrate that in
addition to the usual antisymmetric potential (C)
contribution to d;,.~, there is a further contribu-
tion arising from the homopolar energy gap E„.
In fact the electric field dependence of E„ is also
necessary in order to explain the sign of the
third-order nonlinear susceptibility' C,,».

The average homopolar gap that the bond charge

experiences is experimentally' given by

E„'=a/r, ",
(x.)..=(4 ) '~, '/~. ',

(1a)

(Ib)

(x.)..=3[(x.) +(x.)s l,

(x.).=(4 ) 'o, '/(~. ')., (2b)

where Eq. (2b) is a generalization of Eq. (1b). In
order to generalize Eq. (la) we replace the aver-
age radius ro by the actual radius r~ at which the
bond charge is located. Thus,

(E„')„=a'(r -r, ) (2c)

where &' is another constant and r, is the core
radius of atom n. This r, ~ must be included
since the valence-electron wave functions are
orthogonai to those of the core. Hence, the prob-.
ability of finding a valence electron in the core
region is very small, and the contribution to the
susceptibility from these states must also be
small. In order to simplify the calculation we
mill replace r,, and r, 8 by a typical average
core radius r, = 0.3ro which is its value' in ZnO.

where ro is the average radius =—,'(r„+r8) = —,'d,
s = 2.48, a is a known constant, and g~ is the
average homopolar susceptibility of the bond
charge. Although Eq. (1) is completely adequate
for describing the linear susceptibility, the non-
linear susceptibility is more sensitive to the
crystal potentials and hence a more accurate mi-
croscopic description of &„ is necessary. Both
atoms o.'and P contribute to the average suscepti-
bility:
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Combining Eqs. (2) yields

(E ), I (r -r, )" (rs-r, )"
E~ ~ 2 ' + (3)

It should be remarked that the results of cal-
culating the linear susceptibility )(=(4&) 'Q~'/
E,' (E, '=E„'+C') using Eq. (3) agree just as
well with experiment as using Eq. (Ia). In par-
ticular using the same individual gaps (E„)~for
an interrelated set of crystals (e.g. , InAs, InSb,
GaAs, GaSb) gives good agreement with the total
experimental gaps E„'.

An electric field @ will displace the bond
charge' q by an amount &r~ given by

P = )(h =Nqhr„= (v/d')qAr~, (4)

where N is the number of bonds/cm' (v = 3v 3/4
for zinc blende and wurtzite structures). This
displacement will change both the ionic and cova-
lent energy gaps" &C and ~„, and hence the
linear susceptibility becomes electric field de-
pendent. Thus, identifying the coefficient of the
linear & term with the nonlinear susceptibility,
we arrive at the total nonlinearity d;,„. Physical-
ly Miller's 6;,, =d;,„/)(' is more fundamental
than d;,.~ since & should be proportional to the
total acentricity of the bond. The results of this
calculation are

a, ,„=~„„(C)+a, ,„(E„),

have widely different sized atoms. In crystals
laking a first-row element, p is so small (e.g. ,
p =0.04, ZnS; p =0.068, InAs) that p is not signif-
icantly different from zero within the uncertainty
for the determination of r~ (at least 5%) and thus
for sim.plicity we take p=0 for this case.

The sign of & is vitally important since a theo-
ry which gives the wrong sign (even if it coinci-
dentally gives the correct magnitude) may be
missing some important physics. Fundamentally
the signs of &(C) and b,(E„) reflect whether the
potentials increase or decrease upon the applica-
tion of a positive field @. The sign of p is posi-
tive if the metal atom is larger (e.g. , p&0, ZnO)
and negative otherwise (p&0, BAs); while the
sign of &(E„) is opposite to that of p (remenber
q &0).

Table I lists all the && semiconductors for
which p is large, ' and for comparison, ZnTe.
The agreement with experiment is excellent both
in magnitude and sign and is obtained without
adjustable parameters. The relative importance
of the two effects (electronegativity C, displace-
ment p) can vary widely. For example in ZnTe
p=0, and C is large, while in BAs C =0, and p
is large. For the interesting intermediate case
of BeO both acentricities oppose one another so
that the bond appears to have no net asymmetry
and ~ is an order of magnitude smaller' than the

~„„(C)= [4~(300)&] „*"„C,
Qpg

4&(40) G;,„d2E„2
v (Q~)'q (5)

where b(C) (derived in Ref. 2) and &(E„) refer to
the contribution arising from the electric field
dependence of C and E„, respectively. The &(E„)
term is completely new; its crucial importance
has not been realized previously. G;,.~ is the
geometrical factor, and p=(r~-rs)/(r~+rs) is
the normalized measure of the displacement of
q from the exact center of the bond.

Equation (5) shows that &;,~ depends on the
total acentricity of the bond, which can be thought
of as arising from two distinct sources. One
type of acentricity [&(C)] is the electronegativity
difference between the bonding atoms as mea-
sured by the ionic energy gap C. The second
acentricity [&(E„)]is the displacement p or q off
center.

Because &(E„) vanishes when p=0 (e.g. , GaAs)
this term is only important for crystals like ZnO
which contain a first-rom element, and hence

Crystal
cale expt

(10 esu) (10 ~ esu)

InN(w) *.

ZnO(w)
GaN(w) *
A1N(w)
sic (w)

SiC(z)
BeO (w)

~As(~) ~

Sio, (O

ZnTe(z)

+0.323
+0.288
+0.260
+0.211
+0.205
+0.205
+0.180
-0.179
+0.268

=0

+94
+25
+52
+43
+70
+61
+ 7.1
+28
-0.96
+300

-212
-53
-115
-84
-268
-232
-8.4
+ 846
+ 2.18

=0

-118
-28
-63
-41
-198
-171

3
+ 874
+ 1.22
+300

-22a

-0.75"

+ 1Q2

+ 310

Ref. 1.
Ref. 8.
B. C. Miller, private communication. The sign of

& for BeO is based on etch patterns.

Table I. Comparison of theory and experiment for
the nonlinear optical coefficient d, ,~. For wurtzite (w)
d33 is given, for zinc blende (z) dq4 is given, while for
1eft quartz (O d&& is given. The asterisk means that
good index of refraction data are unavailable (we used
that of Ref. 6); hence the ca1culation is less accurate
for these materials.
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FlG. l. plot of theory {the straight line uses no adjustable parameters) versus experiment for Miller's &.

average value. The small value of & in LiGaO, '
is probably also due to such a near cancellation.
Note especially that the anomalous negative sign
of ~33 in ZnO is completely explained, as is the
anomalous sign of the more complicated crystal
SiO,.

Figure 1 exhibits more clearly the excellent
agreement in magnitude and sign between theory,
given by the straight line [Eq. (5) ], and experi-
ment. The experimental signs for most (see Ref.
1 and Table I, Ref. c) of the materials shown
are known. Note again how the anomalous nega-
tive sign of &33 in ZnO is clearly explained.

It is very useful to obtain a simple physical

measure of the total bond acentricity, which we
will denote by &. Using several reasonable ap-
proximations, Eq. (5) can be simplified to

b, =3.7x10 6{) esu; {j=f;-4p.

Figure 2 dramatically demonstrates the good
fit of Eq. (6) for both positive and negative 6

(i.e., both ."irst-row and nonfirst-row crystals).
It is satisfying that there is complete symmetry
between positive and negative &. In particular,
for these crystals ~ has the corresponding max-
imum and minimum values of about +0.75, with
& having the extreme values of about +3 ~10
esu.

—+ )—
th
Q) 0-0
Cl

3 4

l.0 —.8 —.6 —.4 —.2 0 +.2 + 4 +.6 +.8 +I.O

FIG. 2. Plot of Miller's & =3.7& &0 6 esu against the total bond acentricity 6 =f; —4p. Open circles are exper-
imental points {see Ref. 2 for references); closed circles are calculated from Eq. {5).
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Another satisfying feature of ~ is that the pecu-
liar BAs which has f; = 0 and a, large negative
value for p (making () positive) is right on the
curve of Fig. 2 along with say ZnSe which has
about the same positive & (but which arises from
the opposite situation p = 0 and large f;). This is
powerful evidence that ~ is truly a fundamental
measure of the total fractional acentricity. In
this light we can say that CuCl and InN which
have ()'s of =+75%, respectively, are about as
close to the maximum possible distortion (&
=+100%) and consequently the largest & (4X10
esu) one can get in these crystals before there is
a phase change' to a six-fold-coordinated struc-
ture.

In conclusion, we have shown the importance
of the acentricity produced by the displacement
of the bond charge off center. Without adjustable
parameters, this effect completely explains the
"anomalous" sign of ZnO and SiO, as well as the
very small value for & in BeO. It is very im-
portant to be aware of such possible cancella-

tions (i.e., () =0) if one wants to find materials
with large nonlinear coefficients.
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x = -1"g,s,.„--,'g, ,~„s,,s,.„ (1)

where 8,-„,8,, are spin-& operators and where
the sums extend over the points of a lattice.
This model corresponds to the pseudospin formu-
lation of phase-transition problems and may be
used to study order-disorder ferroelectrics with
a tunneling effect' or the magnetic ordering in
materials with singlet crystal-field ground
states. ' It is one of the simplest models where
a phase transition takes place at a finite external
field. There exists a phase boundary in the F-
T plane as shown in Fig. 1, where results cal-
culated by various methods for a simple cubic
lattice with nearest-neighbor interactions are
plotted. The curve is limited by the points I
= 0, T = T, (ising model) and T= 0, and I'= 1",,
where I, is the critical transverse field. In the
region above the curve the S, components are This series has been calculated up to n = 5 from

The phase transition in the Ising model has been studied as a function of an applied
transverse field, by Green s function and series-expansion methods. The critical in-
dices are probably independent of the applied field except at T = 0 where they appear to
be related to those of the Ising model in one higher dimension.

The Ising model in a transverse field can be disordered although (S,.„)c 0. The transverse
represented by the Hamiltonian field plays a role which is in many ways similar

to the temperature and the critical temperature
decreases as the field increases.

The system has first been studied using a
Green's function method, where the equations of
motion for the Green's functions were decoupled
by a scheme introduced by Callen' for the Heisen-
berg model. The high-temperature susceptibility
is calculated in a self-consistent way and diverges
at the critical temperature. The phase boundary
curve thus obtained is plotted in Fig. 1 (curve 3).
In the limit I -0 this approximation corresponds
to the spherical model of the Ising case.

A better result is obtained from a series ex-
pansion of the susceptibility8 in (PZ)", where P
= 1/kT:
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