EXCITED ROTATIONAL BAND IN "SPHERICAL" 150 Sm †

Philip Debenham and Norton M. Hintz

Williams Laboratory of Nuclear Physics, University of Minnesota, Minneapolis, Minnesota 55455 (Received 18 May 1970)

Evidence is presented from the reaction $^{152}{\rm Sm}(\rho, t)^{150}{\rm Sm}$ for the existence of an excited rotational band based on the 1.256–MeV 0^+ state of 150 Sm, with 2^+ and 4^+ members at 1.417 and 1.819 Mev.

The low-lying states of nuclei around $N = 88$ undergo a transition in character from harmonic vibrational $(N < 88)$ to rotational $(N > 88)$. This can be interpreted as indicating a shape change from spherical to deformed. However, these nuclei, especially those close to $N = 88$, are quite soft to shape variation and probably have zeropoint vibrations whose amplitude is comparable with their average deformation.¹ In the following we will refer to "spherical" and "deformed" states, realizing that this describes only in some average way the nuclear shape.

 150 Sm (N = 88) and 152 Sm (N = 90) are spherical and deformed, respectively, in their ground states, but have excited 0^+ states which are believed to have shapes quite unlike the ground states. The 1.091-MeV 0^+ state of 152 Sm is strongly populated by the (t, p) reaction from the spherical ground state of $^{150}Sm, ^{2,3}$ in contrast to the usual weak population of excited 0^+ states by the (t, p) and (p, t) reactions. Hinds $et al.²$ interpret this as indicating a spherical character for the state. Further support for this picture comes from a recent (p, t) experiment⁴ in which this tate is not seen in pickup from deformed 154 Sm.

ikewise, the unusual strength with which the (p, t) reaction connects the deformed ground state of 152 Sm with the 1.256-MeV 0⁺ state of 150 Sm⁵ indicates that the latter is a deformed state of a nucleus whose ground state is spherical. If the 1.256-MeV state is indeed deformed, it must serve as the basis for a rotational band. The resolution of the earlier (p, t) experiment left unanswered the question of whether such a rotational band exists.

We are currently studying the (p, t) reaction at 19 MeV for a range of rare-earth nuclei. Targets of ¹⁵²Sm on C backing have been bombarded with 19-MeV protons from the John H. Williams Laboratory MP tandem. The resultant tritons were analyzed with a split-pole magnetic spectrometer and were recorded on nuclear emulsion. The overall energy resolution was approximately 10 keV. The spectrum of tritons recorded at $\theta = 25^\circ$ is displayed in Fig. 1. Table I gives the excitation energies, angular momenta, and

relative cross sections for the states observe in 150 Sm.

The 1.256 -MeV $0⁺$ state is strongly excited, as in the earlier experiment, 5 and candidates for the $2⁺$ and $4⁺$ members of its rotational band appear at 1.417 and 1.819 MeV, respectively. The 1.417 -MeV state has been assigned $J^{\pi} = 2^{+}$ by Lure, Peker, and Prokofev⁶ and by Smither and Buss.⁷ Lure, Peker, and Prokofev suggested that the state is a rotation of the 1.256 -MeV 0^+ state. The 1.819-MeV state has recently been assigned $J^{\pi} = 4^{+}$ by Smither and Buss⁷ from resonance capture in the reaction $^{149}Sm(n, \gamma)^{150}Sm$. Thus, the angular momenta of these states are proper for a $K = 0$ rotational band.

Angular distributions of 152 Sm(p, t)¹⁵⁰Sm with $L = 0$ leading to 0^+ final states are shown in Fig. 2. They have nearly identical shapes, while the various $L = 2$ angular distributions shown in Fig. 3 have dissimilar shapes. This dissimilarity of $L=2$ angular distributions is reminiscent of that noticed by McLatchie et al. in the reaction $^{154}Sm(p,$ t ¹⁵²Sm.⁴ We have demonstrated that it is not a Q-value effect by raising the proton energy to 20 MeV and observing no change in the relative shapes of the $L = 2$ angular distributions. The L $= 2$ angular distributions are not sufficiently characteristic to serve as a basis for assigning angular momenta to the final states. Nevertheless,

FIG. 1. Spectrum of tritons observed at $\theta = 25^{\circ}$ from the bombardment of a 152 Sm target with 10-MeV protaminants are identified in Table I. The 0^+ , 2^+ , and 4^+ members of the excited $^{150}{\rm Sm}$ rotational band are indicated.

Table I. Excitation energies, J^{π} values, and relative cross sections of the levels numbered in Fig. 1. States in ¹⁵⁰Sm which have been observed previously are assigned the previously measured energies (without errors) and J^{π} values.^{a-e} States not previously observed have been assigned excitation energies (with errors) by interpolation from known excitation energies.

^aSee Ref. 3.

 b See Ref. 6.

°See Ref. 7

^dR. K. Smither, Phys. Rev. 150, 964 (1966).

^eC. M. Lederer, J. M. Hollander, and I. Perlman, Table of Isotopes (Wiley, New York, 1967), 6th ed.

the angular distribution for the 1.417-MeV rotational state is at least compatible with the assignment of $J^{\pi} = 2^{+}$ to the state. Thus, the (p, t) angular distributions for the excited rotational states support the angular momentum assignment for the 0⁺ member and are consistent with the assignment for the 2^+ member. The angular distribution of the 1.819-MeV state shown in Fig. 3 cannot be used to confirm the 4⁺ assignment.

Further evidence for the rotational nature of these states comes from their excitation energies. Figure 4 shows the energy spacings of the ground-state rotational bands in deformed eveneven samarium nuclides and of the proposed ex-

FIG. 2. $L=0$ angular distributions of tritons from the reaction 152 Sm(p, t). The cross sections for three different 0^+ final states in 150 Sm are given in the same arbitrary units.

FIG. 3. Triton angular distributions from $^{152}Sm(p,t)$ leading to some final states in ¹⁵⁰Sm with $J^{\pi} = 2^+$ ($L = 2$) and $J^{\pi} = 4^+$ (L = 4). The L = 4 angular distributions are all poorly defined due to the proximity of the 4⁺ states to strong neighboring states. The angular distribution shown for the 1.819 -MeV 4⁺ state is typical in this regard.

FIG. 4. Energy spacings of $K=0$ rotational bands in even-even samarium nuclides. The energy of the state J relative to the 0^+ band head is shown for $J=2$ (closed circles) and for $J=4$ (open circles). The solid line connects the energies which are predicted from a $J(J+1)$ formula. The spacings shown are for the ground-state bands of $1\overline{5}2$, 154 , 156 Sm ($E_0=0$) and the excited band of 150 Sm (E_0 =1.256 MeV). For 150 Sm, the energy of the first-excited 2^+ state (2_1^+) relative to the ground state is shown for comparison.

cited rotational band in ¹⁵⁰Sm. The adherence of these spacings to a $J(J+1)$ dependence supports the rotational picture. The systematic increase in the rotational energies with decreasing neutron number reflects a decrease in the moments of inertia. This systematic N dependence of the moment of inertia indicates that the intrinsic shape of the excited 150 Sm rotational band is smoothly related to the ground-state shapes of the deformed samarium nuclides.

The strengths with which the (p, t) reaction populates the 2^+ and 4^+ members of the excited 150 Sm rotational band, relative to the 0^+ member, are 0.20 ± 0.04 and 0.03 ± 0.01 , respectively. The numbers are the relative differential cross sections summed over a distance set of reaction angles. We have measured the corresponding strengths for the ground-state rotational band of ¹⁵²Sm in the reaction ¹⁵⁴Sm(p, t)¹⁵²Sm, $E_p = 19$ MeV. They are 0.272 ± 0.015 and 0.045 ± 0.005 . Broglia, Riedel, and Udagawa' have shown that the relative strength to the state J observed in two-neutron-transfer reactions on deformed nuclei measures the Jth multipole component of the deformation carried by the transferred pair. Thus, the similarity of the relative strengths points to a similarity in intrinsic shape for the ground-state 152 Sm and excited 150 Sm rotational bands.

In summary, the levels at 1.256, 1.417, and 1.819 MeV in 150 Sm have angular momenta, energy spacings, and two-neutron pickup intensities which identify them as members of a rotational band with properties similar to the ground bands of the neighboring samarium nuclides.

\$%ork supported in part by the U. S. Atomic Energy Commission (Report No. COO-1265-90).

¹K. Kumar and M. Baranger, Nucl. Phys. A110, 529 (1968).

 2 S. Hinds, J. H. Bjerregaard, O. Hansen, and O. Nathan, Phys. Lett. 14, 48 (1965).

 3 J. H. Bjerregaard, O. Hansen, O. Nathan, and S. Hinds, Nucl. Phys. 86, 145 (1966).

4W. McLatchie, J. E. Kitching, and W. Darcey, Phys. Lett. 36B, 529 (1969).

 $5J.$ R. Maxwell, G. M. Reynolds, and N. M. Hintz, Phys. Rev. 151, 1000 (1966).

 ${}^{6}E$. Ya. Lure, L. K. Peker, and P. T. Prokofev, Izv. Akad. Nauk SSSR Ser. Fiz. 32, 74 (1968) [Bull. Acad. Sci. USSR, Phys. Ser. 32, 74 (1968)].

 ${}^{7}R$. K. Smither and D. J. Buss, Bull. Amer. Phys. Soc. 15, 86 {1970).

 ${}^{8}R$. A. Broglia, C. Riedel, and T. Udagawa, Nucl. Phys. A135, 561 (1969).