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In the context of the Chew-Snider version of the Amati-Bertocchi-Fubini-Stanghellini-
Tonin pion-exchange model, we investigate certain multiperipheral mechanisms that
could account for those phenomena that have hitherto motivated the two-fireball model.
These mechanisms are (1) double diffractive dissociation, (2) the presence of a sequence
of neutral particles on the multiperipheral chain, and (8) statistical fluctuations in the
1ogtan& spectrum. At cosmic-ray energies they are of equal importance.

The two-fireball model was proposed by vari-
ous authors' in the late 1950's to explain a re-
markable property of cosmic-ray events observed
in photographic emulsions, namely, that the
spectrum of secondary particles for some events,
when presented in log tan0&», appeared to have
large gaps, separating the secondary particles
into "forward" and "backward" clusters. Accord-
ing to the model, secondary particles were
thought to arise from two well-defined centers,
one moving in the projectile direction and one in
the target direction in the center of mass.

In interpreting these data in the context of the
multiperipheral model, we shall stress what ap-
pears to us to be the best-established empirical
feature, namely, the frequent presence of sub-
stantial gaps in the log tang»b spectrum. We
call this the "fireball effect. " The decay distri-
bution of the "fireballs, " i.e. , the forward and
backward clusters, is empirically less well un-
derstood, and it is here that the multiperipheral
model is at variance with the two-fireball model.
(In our model the fireball is not a well-defined
entity. Its average mass increases without bound

as the overall energy increases. )
At first sight the fireball effect would seem to

contradict predictions of the multiperipheral
model. Consider a typical multiperipheral event
described by the diagram in Fig. 1. All the two-
particle subenergies' s;, and momentum trans-
fers t; are assumed to be small compared with
the overall energy. The final particles all have
small transverse momenta P~, and their longi-

FIG. 1. Multiperipheral diagram for the process
A+B a+b+ ~ ~ ~ +Z.

tudinal momenta in the laboratory frame P ~~
are

arranged in an approximately sequential order,
more or less uniformly spaced in the variable
lnp~~.

' (Assuming that all particles have the
same P ~, the uniform distribution in lnP

~~
trans-

forms into a uniform distribution in log tan&. )
However, when the model permits a broad dis-

tribution in the subenergies so that a few can
greatly exceed the average, individual events can
deviate markedly from the above description. A
large two-particle subenergy s;, will produce a
"gap" in the P „distribution between P; and P, ,
dividing the momenta into two groups, thereby
producing a "fireball-type event. " In the Amati-
Bertocchi-Fubini-Stanghellini- Tonin (ABFST)
multiperipheral model, the two-particle subener-
gy distribution is proportional to the mw elastic
cross section which is dominated by resonances
(chiefly the p), but which also has a small "high-
energy tail" from Pomeranchukon exchange, ex-
tending to quite high energies. Thus there is a
small probability that an abnormally large suben-

ergy (hence a gap) will occur. This is the multi-

peripheral mechanism for double diffractive dis-
sociation. ' A model employing this effect has
been studied for other purposes by Chew and Sni-
der'; we will use their model as a basis for mak-

ing quantitative predictions.
If one observes only charged secondaries, a

sequence of neutral particles on the multiperiph-
eral chain can also produce a "gap" in the mo-
mentum distribution. This is the second source
of fireball-type events in the multiperipheral
model.

Finally, for experiments in which only angles
are measured and not momenta, there exists yet
a third mechanism for producing gaps' in logtan0.
Fluctuations in the transverse momentum P~ can
produce gaps in logtan(9, even for a regular dis-
tribution in lnPq. We will calculate the probabili-
ty for this effect from the experimental P~ distri-
bution.

Before calculating the probability for producing
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"fireball-type events" from these three mecha-
nisms, we must define our terms.

We offer two definitions of a "two-fireball
event. " (1) The first relies upon a knowledge of
only the direction of the produced secondary,
which is usually the only reliable datum in emul-
sion experiments. If the particle spectrum for
an event in the variable 1.ogtan~~, b exhibits a gap
larger than 1.3, say, then we define it to be a
two-fireball event. (2) For experiments (mainly
in the future) that measure the momenta of the
produced particle as well, we propose a. second,
more specific definition of a two-fireball event.
If the laboratory momenta of an event can be di-
vided into two groups, fast and slow, so that the
squared invariant mass of all pairs of particles,
one chosen from the fast group and one from the
slow group, is greater than some minimum, say
3 GeV', then we call the event a two-fireball
event with a "gap in momentum space. " We will
assume that whenever the subenergy of an adja-
cent pair of particles on the chain exceeds such
a large value, a gap in the momentum spectrum
practically always results in accordance with our
two-fireball criterion. Both definitions can be
generalized in an obvious way for n-fireball
events.

To obtain a quantitative prediction for the prob-
ability of fireball-type events due to the first
mechanism, Pomeranchukon (P) exchange, we
shall consider the model of the "schizophrenic"
Pomeranchukon. In this model the kernel is ap-
proximated as a sum of two components, one with
strength gs representing the low-subenergy res-
onances in the rr elastic cross section, and the
other with strength gp' representing the "high-

l2

IO

energy tail*' of that cross section. ' The strength
of the high-subenergy part was determined in an-
other paper' where the mm cross section, appear-
ing in the kernel of the ABFST integral equation,
was arbitrarily split into the two contributions
above the g-meson peak at s;, = 3 GeV', hence the
choice of 3 GeV' in our definition of a two-fire-
ball event.

The probability of single I' exchange per event,
when it is small, is well approximated by the av-
erage number of I' exchanges per event. The lat-
ter is readily calculated by differentiating the
logarithm of the total cross section with respect
to loggp' just as the average number of pion
pairs is found by differentiating with respect to
log(g~'+gp ). We are excluding the special class
of single diffractive-dissociation and elastic-
scattering events from the "two-fireball events. "
These events are associated with I' exchange at
the very ends of the chain. This exclusion can be
accomplished by not differentiating with respect
to the gp' factor that corresponds to I' exchange
at the ends. After some algebra, using the pa-
rameters of Chew and Snider, we obtain the re-
sult plotted in Fig. 2 for the average number np
of fireballs per event in a mn collision. Shown
also, for comparison, is the average multiplicity
n of pions, i.e. , the average number of pions pro-
duced per inelastic collision. It is possible to ex-
tend this result to nP and PP collisions by means
of a crude scaling law. The plot of Rp vs pl in Fig.
3 is independent of this scale, however, and uni-
versal to all reactions in this model. For n~ 7,
the curve is fitted roughly by the expression

n =0.10(n-6).
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FIG. 2. Bight scale, average multiplicity of Pome-
ranchukon exchange per inelastic event, np., left scale,
average (produced) pion multiplicity per inelastic event,
n versus energy for ~~ collisions, as predicted by the
schizophrenic Pomeranchukon model (see Ref. 6).
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FIG. 3. Average multiplicity of Pomeranchukon ex-
change per inelastic event versus average (produced)
pion multiplicity per inelastic event.
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s/s, = II (s, ,/c).
all energies

(2)

From the rate at which the average multiplicity
of secondaries grows with energy, it is possible
to estimate the average value of the ratio s;, /c.
Recent preliminary experimental results for sec-
ondary multiplicities in PP collisions are fitted
with the expression

n=a lns+b

for a=1.13." Since from Eq. (2)

(3)

To estimate the frequency of neutral-particle
gaps, we first find the average number of sequen-
tial neutrals required to produce an apparent
"gap" with a 3-GeV' "subenergy. " To do this,
we shall use an approximate expression derived
by Chew and Pignotti, "

combined probability is

np + nil ——0.2n-0. 9. (8)

When only the angles of the secondaries are
measured, one must resort to our first definition
in terms of gaps in logtan~. We show below that
for particles with average transverse momenta,
the two definitions are equivalent. We only need
add to the above probability the probability that
an average subenergy and abnormal transverse
momenta produce a gap in logtan~.

The average spacing in logtan6, i.e. , the aver-
age value of ii =—log[(P ~~, /P») (P ~;/P ~~;)] is easily
estimated from the expression for the average
multiplicity. The total length of the log tan0 plot
is logs+const. Therefore with p»=p~;, nF= logs
+ const. Hence"

ln(s/s, ) = n In(Y;, /c), (4)
R = log(p ~~ ~/p ~~;) = (loge )/a = 0.38.

we estimate that

ln(s, ,/c) = 1/a = 0.9.

Comparison of the Chan-Koskiewicz-Allison mul-

tiperipheral model' with experimental data indi-
cates that a typical value of the average subener-

gy is 0.5 GeV'. " With this value for s;, , we ob-
tain c =0.2 GeV'.

Corresponding to Eq. (2), there is an expres-
sion relating the subenergy of two nonadjacent
particles i and l to the intervening adjacent-parti-
cle subenergies:

Sii/C = (Sii/C) ' ' (S~i/C).

Thus when the number of intervening particles is
two, the accumulated subenergy s;, is already 3
GeV' on the average. Hence only two successive
neutral particles are required to produce the ap-
pearance of a large subenergy between adjacent
particles. If it is further assumed that the prob-
ability of a neutral particle is one-third per par-
ticle and uncorrelated between adjacent particles,
then we estimate the average multiplicity of neu-
tral gaps to be (3)' times the average multiplici-

l.e. ,

n„=0.1(n—3). (7)

(At least four produced particles are required to
-make two fireballs, each containing at least two

particles, in addition to two neutral particles;
hence the 3.)

These two mechanisms, P exchange and neu-
tral gapa, constitute our model for producing
fireball events according to our second defini-
tion in terms of gaps in momentum space. Their

sii (p II i /p tl i ) i,
where w; = (P~, '+m„')' '. Then for P~~m„

i~ = log(s, ,/w, .m, ).

(10)

If we use a typical experimental value p ~' = 0.15,
then when s;, & 3 GeV', v &1.3.

For an average subenergy s;, = 0.5, the gap ex-
ceeds 1.3 only when so pv, &0.025 [cf. Eq. (11)].
Assuming that the distribution in P ~ is approxi-
mately uncorrelated with s;,. and given by

dN/dP ~' = exp(-P ~'/0. 15),

the probability of such an occurrence is about 5%
per particle. However, this result is highly sen-
sitive to the subenergy in this range. For s;,.
= 0.8 (a value less likely than 0.5 by a factor of
about 2' ) the probability is 20%%uo. In order of
magnitude the average number of gaps from this
source is

noir =0 1(n 1). — (13)

The net probability for gaps in logtan0 is then
roughly 0.3n-1.0 for n& 5.

Although the multiperipheral model predicts
that for individual events there may be gaps in
the distributions, the combined distribution-Of
many events will not have dips. The gaps occur
with equal frequency anywhere along the chain.

To estimate the spacing when s;,. & 3 GeV', we
can either use the rule of thumb, derived in the
discussion of neutral-particle gaps, that three
average gaps equal a & gap, or we can calculate
the spacing directly, using the expression for s;,.
in terms of the momenta, when Pq, »P~~; »P~;,Pj.„
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We are encouraged by the observation reported
by Dobrotin and Slavatinsky" that in cosmic ray
events at energies in the range 100-1000 GeV a
marked asymmetry is observed in the particle
distribution in the center of mass for some
events. Moreover, the multiperipheral model
tends to agree with their observations that some
of the secondaries in the "decay" of the fireball
have abnormally large energies in the fireball
center of mass. These would correspond to the
left- and right-most particles in the fireball
group on the multiperipheral chain.

Furthermore, our results are not necessarily
in disagreement with the detailed statistical anal-
ysis of Gierula, Miqsowicz, and Zielinski and of
Gierula and Wojner' for bimodality in the log tan8
spectrum from emulsion experiments. A posi-
tive D test for bimodality is not a positive test
for two separate peaks. A trapezoidal distribu-
tion gives a positive D test for bimodality.

Because of the attractiveness of the two-fire-
ball idea, many experimenters have hitherto fo-
cused their attention on the structure of the fire-
ball clusters and on the separation of the "cen-
ters" of the clusters. From the standpoint of the
multiperipheral model, however, a frequency
distribution of gap sizes would be a useful analyt-
ical tool.
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