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The projected propagator of the dual-resonance model is presented. Lt is used to give
an operator proof of duality and to construct various tree and loop operators.

An attractive attitude towards the n-point func-
tions of the dual-resonance model is that they
provide the Born terms of a theory of hadr ons.
Much has already been done to implement this
idea. Multipartiele tree graphs have been factor-
ized, ' thereby yielding the level structure of the
model as well as operator expressions for ver-
tices and propagators. All one- loop diagrams
have been constructed' and renormalized3'4 and
multiloop diagrams have been classified' in
terms of four primitive loop operators. Despite
these achievements, the construction of a com-
plete theory has been impeded by the technical
difficulties associated with so-called spurious
states. " Their contributions must be eliminated
from the basic operators before a completely
dual theory can be formulated. In this paper new
forms for the projection operator and the pro-
jected propagator are presented. These, togeth-
er with R veI'tex operator pI'evlou8ly obtained~
constitute the complete set of operators required
to construct arbitrary dual-resonance diagrams.
The projected propagator is used to present an
operator proof of duality, to construct multipar-
ticle tree diagrams for arbitrary external states,
and to construct simple and useful expressions

for the primitive loop operators of the model.
These Rx'e Rll the 1Qgx'edlents I'equlx'ed to coQ-
struct any multiloop diagram. ' Most of the cal-
culational details and some of the basic formulas
will be left for a later publication. '

The states of the dual-resonance model can be
described by vectors in the Hilbert space gener-
ated by four-vector creation operators a„
Pl = 1 2 e e '. Some of the8e 8tRtes Rx'e 8purlous
in that they do not couple to any number of the
original on-shell extexnal scalar particles.
(These scalar particles are described by the
ground state of the Hilbert space. ) The spurious
states are generated by the operator6

Retlng on RQ arbitrary stRte where

L~p2 g ~g t(n). g(n) j~p2

1,(u) =L '(-u)
t(x)+ g [n(++1)]an t(n+ x).+(n)

This ls due 'to the fact that A(P) annihilates any
vector in the Hilbert space that describes a tree

Og

(b)

FIG. 1. The symmetric vertex describing the cou-
pling of three arbitrary states.

FIG. 2. The four-point operator in two dual configu-
rations.



VOX.UMz 2S, NvMsza 6 10 AUGUR 1970

with external OQ-shell groUQd-stRte scalars. In order to construct completely dual operator rules,
not restricted to multiperipherRl configurRtions, it ls necessary to eliminate contributions due to the
spurious states. To this end, the projection opexator onto the space of Qonspurious states has been in-
troduced '

P(p) =I-[&'(-p)-~.]Q(p) IA'(-p)-~. ]) '&(p)

A symmetric vertex opexator describing the coupling of three arbitrary states has been obtained by
factorization of the tx'ee diagrams. IQ the configuration of Flg. 1 lt ls glveQ by

v(p„p., p.; „„,) =E(ol p((, lp,)+(,Ip,)+( .Ip,)+(,IM-I,)+( .IM-I,)+( .IM I,}], (3}

where we have introduced the matxix notation

This vertex opelator may be modified by any "gauge" transformation generated by the operators
A, (p,). The projected vertex VP, t(-p, )P, t(-p, )P,~(-p,) is unique, however. The dots on the legs of
the vertex cRQ be shifted froIQ one side to the other by the twist opex'Rtor '

fl(p) =(-1) embL. (p))

acting on the projected vertex.
Instead of using the projected vertex we find it much more convenient to remove the spurious con-

tributions from the propagator Rnd the external states. The propagator of Fubini and Veneziano, '

D( p) = j, dxx
— (&') -'(1-x)"-' (5)

contains the spurious states. [Our conventions are such that a(s) =o.,+ Is.] For incorporating projec-
tions Rnd for constructing cyclic-symmetric amplitudes lt ls more convenient to wox'k %Qth the t~isted
propagator D(p)Q(p). We now present our main result, the projected twisted propagator:

x ""' ~ x " „()~(P) =P'(-P)D(P)&(P)P(P) =~ dx, , (1-x)" '-" ', , (1-x)""' '.

This formula can be derived by using the SU(1, 1) algebra'

fr.„r.,]=~1.„, [L,„I. ]=-2L,„
and an integral representation of the hypergeometric function to rewrite Eq. (2) in the form

P( )= ' ' (1 u++v) 0 '( u)" ( -~) '( 8)"(~)-' 0 '
sinlIO. ,g, (2III)'

where the u and v contours each enclose the origin and run to infinity. Once derived, it is easy to ver-
ify that the propagator in Eq. (6) has the same matrix elements between external scalar trees as the
twisted Fublnl-Veneziano propagator. Also It 18 gRllge 111VR1'1Rllt slllce tile effect of Illllltiplylllg S(p)
on the left by z"(~) 0 is to effect the transformation x-xz j[1-x(1-z)]and leave Q( p) unchanged.

The first application of Eq. (6) to be considered is an operator proof of duality. Duality (for us)
means the equality of the operator products depicted in Figs. 2(a) and 2(b) when evaluated between pro-
jected states; i.e.,

( V( „p„pP; „a„a)aS( ,aP) V( „p„p- P; „a„aa)-V(p„p„-Q;a„a„a)$(a,Q)V(p„p„Q;a„a„a ))
xP, '(-p, )P,'(-p.}P'(-p,)P.'(-p, ) =o. (9

Once this identity is established, it follows that any diagram constructed from V and X) will be dual
(i.e., identical to all diagrams related to it by duality trans. ormations) up to a gauge transformation,
which is of no consequence when external projected states are attached. The proof of Eq. (9) is ob-
tained by explicitly calculating the four-point operator corresponding to Fig. 2(a) and performing gauge
transfox nations on the external lines so as to yield an operator that is manifestly invariant under the
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cyclic transformation (a;, p;) —(a;+ „p;,,). The possibility of finding such gauge transformations is
the essence of the proof. We present here a much more general result —namely, an explicitly cyclic-
symmetric N-particle tree diagram for arbitrary external states":

where

]. ~i& j&A
u;,. "i~ '(OI exp(Q (a;IP;)+ Q(a;IX(i, j)Ia,.)),i=1 i& j

(10)

X(i, j) =X(j, i) =M (1-u;;, ,)M, (1-u;, , ;,,)M, ~ ~ M, (l-u, , ,),
and (u) represents the matrix (u)„„=u"6 „; u;,. are the standard variables of the N-point function and

dV„ is the standard volume element. Thus the nonoperator part of (10) is just the usual N-point func-
tion for external scalars. The operator I'~ was constructed by evaluating a product of vertices and

projected propagators corresponding to a particular tree graph and performing the gauge transforma-
tions needed to make it explicitly cyclic symmetric. We repeat that this symmetry in the case N =4
constitutes a proof of duality.

The evaluation of tree diagrams for particular external states requires matrix elements of E„be-
tween projected occupation-number states. The special case of on-shell states belonging to the lead-
ing Regge trajectory (states generated by the first creation operator at!'i) is particularly simple. In

this case the projection is trivial and the amplitude may be obtained by the formal operation

~

~

~ ~

~ ~

~

8 8 8
Pv ' 'X i 8 (1) 8 (1) 8 (1) Ei=1 & ~ P i ~ + 8a, ~ a. =p

where ez„. . .~(p;) is the polarization tensor for the state of spin 8; on the leading trajectory.
The operators in Eqs. (3) and (6) can also be used to calculate diagrams with loops. As has been

shown elsewhere, ' all diagrams of a dual model can be constructed from four primitive loop operators.
For example, all planar diagrams can be obtained by attaching the tadpole operator in Fig. 3 to a tree.
This operator is not hard to calculate using Eqs. (3) and (6). The result is

~1

T(a)=4~'g . w " '[f(w)]j '«Iexp((alII-w]+[1-w)Ia)j,
gp ln w

where

f(w) = II (1-w")
n= 1

and E represents the "elliptic" matrix

(12)

and

2(mn)'"Inw ' '1-(w) 1-(w)

(w) w"

] (w) ] wll Bltl

(13)

When attached to a tree of external scalar particles, T(a) gives rise to the known form of the planar
one-loop diagram, ' including the famous factor of 1-w discovered by Bardakci, Halpern, and Shapiro. '

The matrix E generates the elliptic functions that appear in planar diagrams; in fact, it can also be
written in the form

1 (mn)'" 8 8 " y-x
(E) „=—,, —— ——ln

2 m!n! Bx By g(x/y, w)
(14)

FIG. 3. The tadpole operator T(a}.
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g(x, w) =—

lnzo . m lnx
g(x, w) = — sin

lnzo

g(x, w) has been previously defined in Ref. 4. One of several equivalent forms for it is

lnw . m Inx " [1-q'" cos(2w inx/lnw) + q'"]
lnw „, (1-q'")'sin

where q = exp(2w'/Inwj .The tadpole operator requires renormalization (because of the factor P(w)] '),
and a counterterm is easily constructed. One simply replaces E by E, where E is given by Eq. (14)
with g(x) replaced by

which exponentially approximates g(x) near w =1."
In conclusion, we believe that the projected propagator in Eq. (6) is a. useful discovery, which makes

the calculation of any dual-resonance-model diagram possible (but not easy). We have used it, for ex-
ample, to construct an expression of structure similar to Eq. (12) for the nonplanar self-energy opera-
tor. We have also found the nonorientable tadpole operator. These, and other details, will be present-
ed later. Finally, we remark that it is now quite easy to write operator expressions for multiloop
diagrams. It is still quite difficult, however, to carry out explicitly the internal operator arithmetic.
This would require calculating vacuum matrix elements (or traces) of products of operators some of
which are exponentials of quadratic forms in the creation and annihilation operators [as in Eq. (12)].
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