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The relative importance of the different laboratory distances of interaction of highly
virtual photons is discussed in terms of the data on inelastic ep scattering in the scaling
region. The definition of a characteristic distance distinguishing between short-range
and long-range interacti. ons is given. The magnitude of this quantity is extracted from
the data to be about 0.6& &.

The importance of the question of the range of
interactions in high-energy processes was recog-
nized several years ago by Gribov, Ioffe, and
Pomeranchuk. ' They conjectured that the domi-
nant distances in such processes might increase
linearly with energy. Recently Ioffe' has argued
that, as observed in inelastic eP scattering, ' the
weak q' dependence of the structure function
vW, (q', v) for high v and l q'l ) 0.5 GeV' is incom-
patible with a solely short-range (i.e., range
~ pl'o'toI1 diameter) 111'tel'RctloI1 111 'tile 1Rbol'Rtol'y

frame. Indeed, according to Ioffe, the data' in
this region of high v and relatively small l q'l in-
dicate the presence of interactions with ranges
of the order of several pion Compton wavelengths.

Although Ioffe's idea seems to make sense qual-
itatively, there are three shortcomings in his
analysis that one can point to:

(I) Current conservation requires' the pres-
ence of light-cone singularities involving deriva- .

tives of delta functions in the commutator of two
hadronic electromagnetic currents. These were
ignored by Ioffe. However, in the limit v-~,
these singularities could introduce additional
factors of v in Ioffe's expressions by virtue of
partial integration. These would affect his con-
clusions seriously. One would have to know the
exact form of the dominant light-cone singulari-
ties of the structure functions to see whether the
argument couM be refined. '

(2) Ioffe has not made a precise statement on
the strength of the long-range interaction of the
virtual photon.

(3) It is not possible from his analysis to under-
stand quantitatively the relative importance of
the different laboratory distances of interaction
in inelastic eP scattering.

In this note we show a way to resolve the
above-mentioned difficulties by concentrating on
the scaling region of the process e+p-e+any-
thing. This has been possible following the re-
cent demonstration by Jackiw, Van Royen, and
%est' and others that, taking scaling as an em-
pirical fact, the leading light-cone behavior in
configuration space that dominates the inelastic
structure function vW, (q', v) is given under cer-
tain reasonable theoretical assumptions by a
term. proportional to &(x')e(x.P). Consequently,
in the scale region, the usual four-dimensional
Fourier integral for vW, (q', v) in terms of the
electromagnetic current commutator in configu-
ration space collapses into a one-dimensional in-
tegral on the surface of the light cone. The cor-
responding integration variable can be inter-
preted —in the lab frame —as the interaction time
or equivalently as the 1ntelact1on range fol the
asymptotic process. The unknown function in
the integrand which illustrates in a quantitative
manner the relative importance of the various
distances of ineraction involved can be explicitly
obtained in terms of the observed scaling function
E,((u).

%e start with the spin-averaged, local, and
current-conserving decomposition of the electro-
magnetic current commutator between two iden-
tical protons in configuration space:

+[PpP„Cl-P. B(epP„+&„Pv)+gpss(P'&) ]Mp 'c2(x, x P),
where c,,(x', x P) =-c,,(x', -x.P) and c„(x',x P) =0 for x'(0. The Fourier transforms

C„((u, v) =-i Jd4xe"'"c, (x' x P)

(with ~ =-q'/2M~ v and vM~ =P.q) are functions in momentum space that are free of kinematic singu-
larities. These are related to the usual structure functions W, ,(q', v) by the equations

C, = (4(u2vMp ) '(vW2-2u)Mq W,), C2 =(2(a)vMp2) 'W2.
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The general structure of the functions c„(x,x P) in terms of their light-cone singularities has been
taken by Jackiw, Van Royen, and West' on the basis of locality and causality to be of the form

n

c„(x',x P) = e(x. P)[8(x')f,~(x', x P)+ Q d"&(x')s„t"&(x P)], (1)
n~0

where 5 " (x') = [d" /d(x')" ]5(x'), and the functions f and s are even in x P. Furthermore, the Fourier
transforms of f„(x',x P) and s„f"~(x.P) in the one-dimensional variable x P have finite support [this
is due to the mass spectrum condition q P ~ a(-q') and can be shown using the Deser-Gilbert-Sudar-
shan representation]. Assuming (a) that f„(x',x P) and s, ,t"I (x P) are sufficiently regular and uni-
form for various nonrigorous manipulations (e.g. , interchange of limit and integration), and (b) that
the functions C»(q', v) do not have singularities like e(q P) 5(q') (these could be interpreted as coming
from massless particles which are not present in the problem), the authors of Ref. 8 have shown that
nonzero limits of ~, and v~'„when &- with & fixed, can exist when the leading light-cone singular-
ity of

c,(x', x P) I . e(x P)5(x')
) ~

is proportional to

In other words, the presence of singularities such as d "I (x') (n ~ 0) in c,(x', x P), and 9 I (x') (rn ~ 1)
in c,(x', x P) would be incompatible with the observed scaling of the structure functions W,(q', v) and

vW, (q', v), respectively. With this result, the authors of Ref. 8 have been able to write

E,((u) = lim vW, (q', v) = —lim 2i&uv'ttf~'fd xe"'"e(x P)9(x')f, (x', x P), (2
fd fiXCCI QJ flXed

E,((u) =4'(of „d(x P)e' "'Pf (x P)x I.

Equation (3) gives E,(~) as a one-dimensional
integral over all possible interaction times &,

T(or ra-nges ( x ( -=A) in the laboratory frame.
The function f,(x'P) which can be related to the
data by Eq. (4) is the function of interest in de-
scribing quantitatively the relative importance
of the different laboratory distances of the pho-
ton's interaction. We can show the following
general properties of f,(x P) if E,(co) is smooth
enough:

f (0) =(4&') 'f, duE, ((u),

[d/d(x'P)]f, (x P)I, p-, =o,

(5)

(8)

f,(x P) =-f,(0,x P) and the integral is on the sur-
face of the light cone. Inverting the Fourier
transform and using the evenness of E,(cu),
Jackiw, Van Royen, and %est' obtained the equa-
tion

However, if E,(~) goes to zero as &u" when cv

-0, and if n is the order of the highest derivative
of E,(e) that exists in 0 e & 1, then f,(x P) falls
off as (x P) I"+' when [I]+1&n and at least as
fast as (x P) "+'I when [n] +1&N as x'P-~.
The precise form of f,(x P) has to be obtained
by substituting the data (Fig. 1) in Eq. (4).

In determining the form of f,(x'P), one is faced
with the experimentalists' ignorance of the pre-
cise behavior of E,(tu) as &u -0. As shown in
Eq. (7), the behavior of E,(~) at cu =0 governs
the nature of f,(x P) as x P-~. Now there are

0.5
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o.a — (I'
yB', i
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and df, (x.P)/d(x P) &0 in the region 0 &x P & n
=4 (where n is the first positive solution of the
equation sinn/n-cosn =0)." Moreover, if E,(0)
g0, we have
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lim f,(x P) =—1 EB(0)
8& x'P FIG. 1. Fits of the scale function E2(v).
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E,((u) =
12(v+ 4(1-5&v)(1-~)' (B)

three different possibilities of interest in the be-
havior of F,(~) as (d -0: (A)" E,(~) may stay
constant at about 0.35 as (d -0; (B)"E,(~) may
go through a maximum and decrease slightly as
(u -0; and (C)"F,(~) may go through a maximum
and fall rather rapidly to a very small value or
to zero as co-0. We use three different algebra-
ic expressions for F,(~) which adequately fit the
present data but correspond, respectively, to the
three possibilities mentioned above:

E,((u) = (0.07)((8.4(u'+ 2)'+ 1/e ", (A)

.19-

.12
CL

C4

& .08

.168

4w f&(oj = (0 )
I I I I I I I I

0 4 8 12 16

x P

I I I

20 24 28

F2((d) = (0.084) [(1-(a&) -19.Scan(ln(d + 1-cu)]. (C)

These fits have been drawn in Fig. 1 in compari-
son with the data and labeled with the letters &,
8, and C, respectively. In Fig. 2(a) we have
plotted 4n'f, (x P) against x.P following Eq. (4)
for the three fits. This figure focuses on the
short-distance interaction of the virtual photon
in the laboratory frame. Figure 2(b) is the same
graph as 2(a) on a semilogarithmic plot and

shows more clearly the long tail. f,(x P) is in-
sensitive to the type of fit.

We can make the following comments on the
nature of the curves shown in Figs. 2(a) and 2(b):

(1) The function f,(x P) has a long tail and is
&1% of its peak value even at x P = 100 or a lab-
oratory distance of interaction 8 = 20 F. For
F,(0) e0, this tail is given by f,(x P)-(8&) 'F,(0)/
x P [vide Eq. (7)] and is presumably diffractive
in origin. It corresponds to the data for relative-
ly small ) q'( (~0.5 GeV') and very high v and is
exactly the long-range interaction visualized by
Ioffe. '

(2) f,(x'P) falls to half its maximum value and

goes through a point of inflection around x I' = 6
or in the region of 8=1.3 F. [This is also the
region where the function x Pf,(x P), which is
proportional to the Fourier transform of E,(~)/
u, turns out to have a maximum. ] The nature of
f,(x P) for x P below this value originates from
relatively short-range interactions.

(3) Apart from the long tail, the shape of the
range function f, is reminiscent of the Fermi-
like charge distribution in nuclei —perhaps some-
what distorted by the relativistic motion of the
constituents. This suggests that for distances
&1.3 F the function f, measures the density of
hadronic matter inside the proton at rest. The
curve has an intercept on the ordinate [4&2fn(0)
= jo'des F,((d) ] that is equal to the mean squared
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FIG. 2. Range function on (a) linear plot, (b) semi-
logarithmic plot.

charge of the constituent of the proton. '
(4) The variable R refers (after averaging over

the angles around the direction of the photon's
momentum) to the distance between the point of
absorption and the point of emission of the virtu-
al photon in forward virtual Compton scattering
in the laboratory frame. Using time symmetry,
we can say that on the average the distance be-
tween the point of absorption of the photon and
the center of the proton target in inelastic ep
scattering is going to be 2R. Hence in the lab
frame the characteristic distance that separates
the regime of long-range interactions [mediated
by the hadronic vacuum fluctuations of the photon
and illustrated in Figs. 3(a) and 3(c)] from that
of short-range interactions [locally between the
photon and the constituents of the proton and il-
lustrated in Figs. 3(b) and 3(d)] is =1.3 F in as-
ymptotic forward virtual Compton scattering,
and 0.65 F in deep inelastic ep scattering.

(5) We cannot relate this characteristic dis-
tance quantitatively to the charge radius of the
proton" since we are dealing here with a highly
relativistic inelastic process. However, in view
of our remark (4), we qualitatively expect the
two things to be of the same order of magnitude.

We feel that our considerations are of signifi-
cance on several counts. First of all, it is phys-
ically satisfying that the scale function E,(&u) in
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FIG. 3. Virtual photon-proton scattering in the laboratory frame: (a) long-range forward Compton scattering,
(b) short-range forward Compton scattering, (c) long-range inelastic ep scattering, and (d) short-range inelastic
ep scattering.

inelastic sP scattering can be interpreted as a
one-dimensional integral on the surface of the
light cone, the variable of integration being the
laboratory range of the virtual photon. Secondly,
in the laboratory frame the relative importance
of both a short-range interaction and a long-
range interaction is now quantitatively understood
and the shape of the range function is explicitly
obtained as a Fermi-like distribution with a long
tail. Finally, it is interesting but perhaps not
too surprising that the characteristic distance
separating these two regions is found to be com-
parable with the charge radius of the proton.
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The projected propagator of the dual-resonance model is presented. Lt is used to give
an operator proof of duality and to construct various tree and loop operators.

An attractive attitude towards the n-point func-
tions of the dual-resonance model is that they
provide the Born terms of a theory of hadr ons.
Much has already been done to implement this
idea. Multipartiele tree graphs have been factor-
ized, ' thereby yielding the level structure of the
model as well as operator expressions for ver-
tices and propagators. All one- loop diagrams
have been constructed' and renormalized3'4 and
multiloop diagrams have been classified' in
terms of four primitive loop operators. Despite
these achievements, the construction of a com-
plete theory has been impeded by the technical
difficulties associated with so-called spurious
states. " Their contributions must be eliminated
from the basic operators before a completely
dual theory can be formulated. In this paper new
forms for the projection operator and the pro-
jected propagator are presented. These, togeth-
er with R veI'tex operator pI'evlou8ly obtained~
constitute the complete set of operators required
to construct arbitrary dual-resonance diagrams.
The projected propagator is used to present an
operator proof of duality, to construct multipar-
ticle tree diagrams for arbitrary external states,
and to construct simple and useful expressions

for the primitive loop operators of the model.
These Rx'e Rll the 1Qgx'edlents I'equlx'ed to coQ-
struct any multiloop diagram. ' Most of the cal-
culational details and some of the basic formulas
will be left for a later publication. '

The states of the dual-resonance model can be
described by vectors in the Hilbert space gener-
ated by four-vector creation operators a„
Pl = 1 2 e e '. Some of the8e 8tRtes Rx'e 8purlous
in that they do not couple to any number of the
original on-shell extexnal scalar particles.
(These scalar particles are described by the
ground state of the Hilbert space. ) The spurious
states are generated by the operator6

Retlng on RQ arbitrary stRte where

L~p2 g ~g t(n). g(n) j~p2

1,(u) =L '(-u)
t(x)+ g [n(++1)]an t(n+ x).+(n)

This ls due 'to the fact that A(P) annihilates any
vector in the Hilbert space that describes a tree

Og

(b)

FIG. 1. The symmetric vertex describing the cou-
pling of three arbitrary states.

FIG. 2. The four-point operator in two dual configu-
rations.


