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term in (4) varies as T' and T ' in the low- and
high-temperature limits, just as phonon drag is
normally predicted to vary. ' Thus, while the
first term in (4) exhibits the well-known linear
temperature dependence, the second leads to a
PPD effect. In Fig. 3 we show -x4(x) for a mo-
novalent metal, and give some typical amplitudes
S,. It is clear from Fig. 3 that the PPD contribu-
tion to S is predicted to be of a shape and magni-
tude comparable with the experimentally observed
"humps" that have previously been attributed
solely to phonon drag. Thus, an inclusion of
these effects is essential if valid conclusions are
to be drawn from existing experimental data.

FIG. 3. Estimated PPD contribution to electron-
diffusion thermopower.

and

lim x4 (x) = y, + y, x'
x ~0

limx@(x) = y, x

with y„y„and y, constants, so that the second

with m/M the ratio of electronic to ionic masses,
and N/N' the ratio of numbers of atoms to elec-
trons. The function C (T/8) is a complicated
function of temperature that arises from the tem-
perature dependences of the derivative of the
Fermi function and of the amplitudes for phonon
absorption and emission. It is easily shown that

*Work supported by the U. S. Atomic Energy Com-
mission.

(National Science Foundation Predoctoral Fellow.
fPresent address: Air Force Weapons Laboratory,

Kirtland Air Force Base, N. Mex. 87117.
D. K. C. MacDonald, The~oelectH'city: An Int&o-

d'uction to the PrincipLes (Wiley, New York, 1962).
P. E. ¹ielsen and P. L. Taylor, Phys. Rev. Lett.

21, 898 (1968).
P. L. Taylor, A Quantum Approack to the Solid

8'ate (Prentice-Hall, Englewood Cliffs, ¹ &., 1970).
4P. L. Taylor, Proc. Roy. Soc., Ser. A 275, 200

(1968).
5P. E. ¹ielsen and P. L. Taylor, AEC Technical

Report No. 65 {COO-623-152), Case Vfestern Reserve
Univ. , 1970 (unpublished).

DIRECT EXCITON SPECTRUM IN DIAMOND AND ZINC-BLENDE SEMICONDUCTORS*

A. Baldereschi and Nunzio O. Lipari
Physics Department and Material Research Laboratory, University of Illinois, Urbana, Illinois 61801

(Received June 1970)

We present a new method to investigate the exciton spectrum in the case of degenerate
bands. Using symmetry considerations and second-order perturbation theory, we ob-
tain a simple analytical expression for the binding energy as a function of the band pa-
rameters. Direct excitons in group IV elements, III-V compounds, and II-VI compounds
can be investigated by this method. Results are given for Ge, GaAs, InSb, ZnSe, and
CdTe.

Effects due to direct exciton formation have
been observed in many crystals with the diamond
and the zinc-blende structure. Since the first
observation by Macfarlane et al. ' and Zwerdling,
Both, and Lax of the direct exciton in Ge, many
authors have investigated direct excitons in III-
V 3 and II-VI compounds. In substances where
the exciton has a small binding energy and cannot
be observed directly, effects due to exciton for-
mation have been observed in magneto-optical
experimentss and an estimate of the binding ener-

gy is possible.
In contrast to such abundance of experimental

data, little theoretical work has been done up to
date and, in most cases, only rough estimates
of the binding energy are available. ' Exciton
theory has been developed in detail' for crystals
with simple valence and conduction bands. In
this case the exciton Hamiltonian can be reduced
to that of the hydrogen atom and exact solutions
are obtained. However, crystals with the dia-
mond and zinc-blende structure have a degener-
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ate valence band at k=0, where the exciton is
formed, and therefore the theory for simple
bands cannot be applied.

The exciton Hamiltonian in the case of degener-
ate bands has been derived by Dresselhaus' but,
because of its complexity, no exact solutions are
known. McLean and Loudon' have obtained an

approximate solution for the ground state of the
exciton in Ge using a variational technique pre-
viously introduced by Kohn and Schechter. ' The
same method was also used by Abe" who con-
sidered the direct exciton in Ge and GaAs. This
method involves elaborate computations for the
ground state and becomes practically impossible
for excited states. For this reason the method
has not been applied to other crystals where in-
stead estimates of the binding energy have been
obtained using a simple model in which the degen-
erate valence band is replaced by an "average"
simple band.

Valence-band parameters are now available
for crystals with the diamond and zinc-blende
structures and therefore it would be desirable to
obtain values of the exciton binding energy which

take into account the details of the valence band.
In this Letter we give a simple analytical ex-
pression for the binding energy of the direct ex-
citon which is valid for all crystals with the dia-
mond and zinc-blende structures. This expres-
sion takes into full account all the details of the
degenerate valence band and its results are as
accurate as those obtained using the variational
method.

Crystals with diamond and zinc-blende lattices
have very similar band structures. ' The direct
gap is at k= 0 where the conduction band has a
nondegenerate minimum and the valence band-

has a threefoM degenerate maximum (neglecting
spin). When spin is included, the valence band
becomes sixfold degenerate and is split by spin-
orbit interaction into an upper fourfold and a
lower twofold degenerate band separated by a
spin-orbit splitting 4.

For this kind of band structure, the Hamilton-
ian for the relative electron-hole motion is (ne-
glecting the electronic spin)'

8,„=[p'/2m, *-e'/er] I-H„(p),

where p is the re1ative electron-hole momentum,

m, * is the electron effective mass, & is the
static dielectric constant, ~ is the electron-hole
distance, I is the 6& 6 unit matrix, and H„ is the
well known 6~ 6 matrix which describes the hole
kinetic energy near k= 0 and is given, e.g. , by

Kane "
In all crystals that we are considering, the

spin-orbit splitting 4 is much larger than the ex-
citon binding energy and we can neglect the ef-
fects of the split-off valence band and reduce
the Hamiltonian (1) to the following 4x4 matrix:

~yQ L+ U M-U W3U+

M'-V' -v3U P-Q
M'+V' U'-L' &+Q

(2)

where we have defined

P = " ' ' ——(s-like),p„'+p, '+p, ' e'
2pp cJ' (3a)

Q
—Px O'M Pg

2p, ~

(d-like), (3b)

L ' " " ' (d 1k)
2p, 2

A
M=v3 " ' -i " ' (d like),

2 p~ 2/2

(3c)

(3d)

U=i —' '
( -like),

ao 2ps

1V= -v 3— ' (p-like),
Qp 2gp

(3e)

(3f)

ap= ek'j(ape') being the Bohr radius relative to
an effective mass pp and to a dielectric constant

In the above formulas we have introduced the
masses p,„p„p„and p.s which are the most
natural choice for the description of the valence
and conduction bands in the exciton Hamiltonian.
They are related to the Buttinger parameters'
y„y„and ys as follows:

1/Iup = 1/m, "+y,/m„

1/g, =y, /m„

1jg, = (6/v 3 )y, /m„

(4a)

(4b)

(4c)

P„=II,+Hp+H„,

where mp is the free-electron mass. The effec-
tive mass p, s, which describes the effects of in-
version asymmetry, is infinite for diamond
1attices and generally large for zinc-blende
lattices.

We note that, under the operations of the rota-
tion group, the operators (3a)-(3f) have different
symmetry properties which are indicated on
their right. . In accordance with this, it is natural
to write (2) as
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where H„P~, P„are 4~4 matrices which con-
tain only s-like, p-like, and d-like operators,
respectively. The three terms in Hamiltonian
(5) have a simple physical meaning. The first
term represents an exciton which results from
the Coulomb interaction between the electron
and the isotropic part of the hole. H~ describes
the effect of the anisotropy in the valence band,
and H~ the effects of inversion asymmetry.

To solve the Hamiltonian (5) we note that, from
experimental data, both P~ and II„produce small
effects so that we can consider them as a pertur-
bation with respect to H, . Exact eigenfunctions
and eigenvalues of the unperturbed Hamiltonian

H, are very easily found because the operator
H, can be written as the product of the 4&4 unit
matrix times the Hamiltonian of a hydrogen atom
with reduced mass p,, and dielectric constant

Including now H& and H„as a perturbation,
it is easily seen that, for the ground state, the
first nonvanishing contribution comes from sec-
ond-order perturbation theory. After straight-
forward but lengthy calculations" we obtain for
the binding energy

(6)

where Ro= iL,e'/(2h'e') is the Rydberg relative to
an effective mass p.o and to a dielectric constant
e. In expression (6) the first term comes from
the isotropic part of the Hamiltonian, the second
and the third terms represent the effect of the
anisotropy, and the last term represents inver-
sion asymmetry effects.

We have applied expression (6) to a few group-
IV elements, III-V compounds, and II-VI com-
pounds, and t:he results are shown in Table I
together with the band parameters and the dielec-
tric constants used in the calculation. The re-

suits shown in TaMe I have been obtained neglect-
ing the contribution from the last term in ex-
pression (6) in view of the fact that the inversion
asymmetry effective mass p, 3 is known neither
experimentally or theoretically. The only crystal
for which this parameter had been estimated is
InSb where Pidgeon and Groves' give p, 3=0.872mo.
Assuming this value, we find a correction of
0.0005 meV to the binding energy. Even consider-
ing a large uncertainty for the value of p3 given
above, it is clear that the inversion-asymmetry
contribution to the binding energy is very small,
thus supporting our assumption of treating P~
in the Hamiltonian (5) as a perturbation. From
Table I we also see that the anisotropy contribu-
tion E~ is small and therefore our perturbation
treatment is completely valid. Furthermore,
our results are as accurate as those obtained by
the variational method as is shown by the first
two columns of Table I. In fact for Ge and GaAs
we have used the same parameters used by Abe
and our results are in complete agreement with
those obtained with the variational approach.
The agreement of our results with experimental
estimates of the binding energy is satisfactory
and could be improved by using more accurate
valence band parameters.

It is to be mentioned that our method cannot be
applied, as it is, to the problem of indirect ex-
citons or to that of acceptor states because in
these cases the anisotropy term in the Hamilton-
ian (5) can be so large that perturbation theory
is not valid. However, our method can be ex-
tended to any number of degenerate bands and
any kind of crystal symmetry as long as terms
of lower symmetry in the Hamiltonian (5) can be
treated by perturbation theory. For example,
the method could be applied directly to the gen-
eral Hamiltonian (I) to include the contribution
of the split-off valence band. Finally, the method

Table I. Exciton binding energy E& and anisotropic contribution Ed to the binding energy as calculated from ex-
pression {6)using the band parameters m, , po, p&, and p~ and the dielectric constant e. The energy unit is meV
and mo is the free electron mass.

E

m, +/mo

po/m 0

pg/mo

p, /m 0

E& (theor)
(exp)

Ge

16.0 {Ref. 11)
0.037 (Ref. 11)
0.02.5 (Bef. 11)
0.224 (Bef. 11)
0.051 (Ref. 11)

0.08
1.40

1.2 (Ref. 18)

12.9 (Hef. 11)
0.072 {Ref. 11)
0.04S (Bef. 11)
0.652 (Bef. 11)
0.095 (Ref. 11)

0.22
4.22

8.4 (Bef. 19)

InSb

16.8 (Ref. 17)
0.015 (Hef. 16)
0.011 (Ref. 16)
0.117 (Hef. 16)
0.032 (Bef. 16)

0.02
0.57

ZnSe

8.66 (Ref. 4)
0.170 (Ref. 16)
0.125 {Bef.16)
4.167 (Ref. 16)
0.425 {Hef. 16)

0.88
28.06

19 (Ref. 4)

CdTe

S.65 {Bef.4)
0.096 (Bef. 16)
0.079 (Ref. 16)
1.754 (Hef. 16)
0.888 (Bef. 16)

0.15
11.69

10 (Bef. 4)

375
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can also be applied to excited states, which have
been experimentally observed in some of the
H-VI compounds. ~
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We present a soluMe model of electrons interacting with lattice vibrations which dis-
plays metallic, superconducting, and insulating phases. We solve the thermodynamics
of this model and discuss its properties. The metal-insulator phase transition is sec-
ond order for sc and bcc tight-binding bands. With sufficient deviation [(5-10)%for cou-
pling constantg =0-1l from such band structure the transition becomes first order.
Above this the collective insulator ceases to exist. Our model might apply to certain
transition-series metal oxides, such as VO2.

|Irate treat several aspects of a soluble model which exhibits an insulator-metal phase transition, po-
laron effects, low mobility, and a tendency toward superconductivity. This model has several fea-
tures of certain transition-series oxides such as Ti203 and VO2." Unlike the Hubbard model, ~4 the
preseDt model hRS no slgnlflcaDt magnetic properties~ so thRt lt ls oDly RppllcRble to nonmaglletic ox-
ides." Based as it is on the electron-phonon interaction, we believe this model to apply when the ef-
fective coupling parameter g=g'/8 ~ exceeds the Coulomb parameter & by a sufficient amount so that
qualitatively it is legitimate to ignore U. Otherwise, the Hubbard model is applicable and one obtains
antiferrornagnetic ordering in the ground state. ' In the present model, the ground-state insulating
phase is associated with finite crystallographic distortion, whereby the unit cell is doubled. The
bands then split and what might have been mistaken for a metal with a half-filled band becomes an in-
sulator. Moreover, the density of states near the band edges become anomalously large, resulting in

surprising thermodynamic and transport properties. %e shall later show that the details of the metal-
insulator phase transition depend sensitively on band structure. At first, however, we assume a high-


