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ts of hcp He are derived from longitudinal
he derivation makes use of a relation between

of the volume independence of the axis ratio
the elastic and calorimetric Debye tempera-

We now make use of the linear compressibility
P, i.e. , the relative change in length of a line at
an angle z to the hexagonal axis under hydrostat-
ic pressure. The linear compressibility of a
hexagonal crystal is in general anisotropic and
of the form (Nye")

(2)p = p, + p, cos'y,

where the coefficients P„P, can be expressed in
terms of the elastic constants:

p, =(., ,.)/~—,

p2 ( 11 12 33 1S)/

33( ll 12) 23 (3)

The logarithmic pressure derivative of the axis
ratio c/a, for which we use here the notation, q
=d ln(c/a)/dP, is obviously related to the anisot-
ropy of the linear compressibility and given by

(4)I — 2 ~

For a hexagonal crystal with an axis ratio inde-
pendent of pressure, we must therefore have the
following relation between the elastic constants:

(5)C~j. + C~2 —C~3

i.e. , in this case we have only four independent
elastic constants.

Table I. The axis ratio c/a for hcp He .

V
(cma/mole)

P
(bar) c/a Hef.

20.9
20.6
18.8
17.0
12.5
20.7
17.4
18.5
21.1
16.0

26
30
73

142
1064

30
131

67
25

230

1.6320
1.6320
1.6323
1.6324
1.6324
1.628
1.627
1.63
1.638
1.6288

6
7

7
7
8
9

10
11
12

td 1n(c/a)/dP~ 0. 5 && 10 " cm'/dyn.

Experimental values for the elastic constan
sound velocities and the compressibility. T
the elastic constants which is a consequence
of hcp He4. Good agreement exists between
ture.

Measurements of the velocity of sound in single
crystals of hcp He of known orientation have
been reported by several groups. ' ' The main
goal. of these experiments is to obtain a complete
set of elastic constants for hcp He . Once these
constants are known one can use this information
to obtain quantities like the Debye temperature
and the compressibility at absolute zero, 8, and

E„and the anisotropy of the sound velocity.
Theoretical calculations of the sound velocity in
various directions have also been published4''
and can be used to obtain theoretical estimates
for the elastic constants.

In the past, it has been believed that in order
to obtain the set of five elastic constants, trans-
verse velocities have to be known, since in par-
ticular c» appears only in the expression for the
pure transverse mode. We want to show in this
Letter that, in fact, the elastic constants of hcp
He can be obtained from longitudinal sound data
alone, due to a relation that holds for the elastic
constants of hcp He [see Eq. (5) below].

The new relation between the elastic constants
of hcp He is a consequence of the experimentally
established fact that the axis ratio c/a of hcp He'
stays extremely constant (close to the close-
packed value of 1.6330) over a wide range of mo-
lar volumes. Various measurements of this ra-
tio were published. Vos et al."used the bire-
fringence of hcp He to determine deviations of
c/a from the ideal close-packed value. Mills and
Schuch ' used x-ray methods and Henshaw, '
Minkiewicz et al. ,

" and Brun et al. ,
"neutron dif-

fraction to determine to determine the axis ra-
tio. The determinations range from a pressure
of 26 to 1050 bar, corresponding to a range in
molar volume from 20.9 to 12.5 cm'/mole.
These measurements are summarized in Table I.
While there are some discrepancies between the
various groups, it is clear that c/a is indeed al-
most pressure independent. A conservative esti-
mate for the upper limit of the pressure varia-
tion is given by
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K, =3p, + p2,

and with Eq. (4),

(6)

In order to see how well this relation is obeyed
for hcp He' one can make a comparison with the
volume compressibility at 0 K, K,. In terms of
the P;, and therefore the elastic constants, one
has

C33 C12 C(3 c44

19.28
20.32
20.5'

7.6
5.5
4.7

9.8
7.1
6.3

4.2
2.9
3.1

1.98
1.31
1.42

1.96
1.40
1.13

Table II. Elastic constants of hcp He . Units: '

V,
cm /mole; c;,, 10 dyn/cm2.

P,/P, = 3n/-(K. .n). (7)
'Based on Ref. 2„
Based on Ref. 3.

The volume compressibility at one of our work-
ing volumes, 20.32 cme/mole, is Ko =0.31 x 10
cm'/dyn, so that one obtains from the estimate
(1) the upper limit

IP,/P, l
-'o. 5 x lo '. (8)

The exact value of P,/P, is not too well known be-
cause of the experimental uncertainty in g; it
may well be one or two orders of magnitude
smaller than the given limit. One finds by com-
putation that the elastic constants calculated by
assuming Eq. (5) agree with those obtained by
using Eq. (7) within at least 0.5%. Sound-veloci-
ty data at present still introduce errors of the
order 3%. Once higher precision sound data are
available and also better estimates of g, one
might have to use Eq. (7). We should also re-
mark that corrections from adiabatic to isother-
mal elastic constants and corrections for the
temperature dependence of the sound velocity are
only of the order of 0.2% and can at present be

ignored.
One can now, in principle, obtain the elastic

constants cy] c33 c$3 and c44 from longitudinal
sound velocities and use Eq. (5) to obtain c».
The present sound data are, however, not of suf-
ficient accuracy to make this the best possible
approach. We prefer instead to use the experi-
mentally determined volume compressibility at
absolute zero, E„ in order to arrive at a set of
elastic constants. The volume compressibility
of a hexagonal crystal is in general given by Eq.
(6). If the relation (5) holds, this reduces to

CV

E
v 8-
C

U

C)

Z

EA
4Z

0

I—
CA

2

LLI 0
44

44

44
44

We believe that these constants constitute the
best presently available experimental informa-
tion. The estimated error in these constants is

Elastic constants that were determined in this
way are given in Table II and Fig. 1. The data
at V =20.32 and 19.28 cm'/mole are based on our
own velocity measurements' and those at V = 20.5

cm'/mole are from the velocity data of Greywall
and Munarin. ' Included in Fig. 1 are also the
elastic constants of Crepeau, Heybey, and Lee'
which were obtained exclusively from sound data.
As can be seen from the figure, our data extrap-

Ko —3/(c~~ + 2c ~e). (9)
13

The elastic constants are then found in this or-
der.' cyy and c33 are obtained from the longitudi-
nal velocity in the basal plane, and parallel to the
c axis, respectively. Relation (9) then gives c»
by using the experimental values of K, of Jarvis,
Ramm, and Meyer. " With the knowledge of c»,
c33 and c» we can obtain c44 from the longitudi-
nal sound velocity (we use the value at 45' to the
c axis). c» finally comes from the relation (5).

0
19 2120

MOLAR VOLUME {cm /mole)

FIG. 1. The elastic constants c;, of hcp He as a
function of molar volume. Experimental data: solid
triangles, Crepeau, Heybey, and Lee (Ref. &); solid
dots, Wanner and Franck (Ref. 2); solid squares,
Greywall and Munarin (Ref. 3). Theoretical calcula-
tions: open triangles, Nosanow and Werthamer (Ref.
4); open circles, Gilles, Koehler, and Werthamer
(Ref. 5},
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olate quite well to the data of Crepeau, Heybey,
and Lee. The constants based on Greywall and
Munarin's data deviate up to 15% from this agree-
ment, but the general agreement is still fair.

In Fig. 1 we also show the elastic constants
based on the theoretical calculations by Nosanow
and Werthamer and Gillis, Koehler, and Wer-
thamer. Qualitative agreement with experiment
exists; there exist, however, discrepancies in
detail. We find, in particular, that relation (5)
is fulfilled by the constants of Gillis, Koehler,
and Werthamer' within the accuracy of their cal-
culation, but not by Nosanow and Werthamer's
constants. In the latter case one finds 13,/P,
= 0.085, which is clearly too large. In none of
these calculations was Eq. (5) explicitly used. "
It would appear that this relation does not neces-
sarily follow if calculations are made only at one

density. The question of the validity of Eq. (5) in
a particular system mill entirely lie with the ef-
fective force constants used. In general, the
forces will be of such a nature that the axis ratio
is not preserved under compression.

An interesting remark can also be made with
regard to the Cauchy relations. In a hexagonal
crystal, the Cauchy relations are

11 12 9 13 44'

These relations hold if the forces are central and
if the crystal sites are centers of inversion. The
latter condition does not hold in hcp structures;
this, however, invalidates only the first but not
the second of the Cauchy relations. "' It is now
interesting to observe that all experimental data
show c j 3 c+4 the sm al 1 deviations are we 11 with-
in the error limit. We take this an an indication
that the effective forces in hcp He are, at least
approximately, central. The first Cauchy rela-
tion.:s not observed, as expected.

We have further used the elastic constants to
calculate the Debye temperature at absolute zero,
e„by numerical integration on a computer. In
Fig. 2, we compare the "elastic" Debye tempera-
ture with the calorimetric determinations of
Heltemes and Swenson, "Edwards and Pandorf, "
and Ahlers. '0 We see that agreement exists with-
in the experimental accuracy between the elastic
and calorimetric Debye temperatures, for the
data based on the results of both Crepeau, Heybey,
and Lee, ' and Wanner and Franck. The data of
Greywall and Munarin3 give an elastic Debye
temperature which is 10% low; this probably
points to some undetected errors in their data.
The identity of the elastic and calorimetric De-
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FIG. 2. The Debye temperature at 0 K of hcp He
as a function of molar volume. Elastic data: solid
triangles, Crepeau, Heybey, and Lee (Ref. 1); solid
dots, Wanner and Franck (Ref. 2); solid square,
Greywall and Munarin (Ref. 3). Calorimetric data:
open squares, Heltemes and Swenson (Ref. 18); open
circles, Edwards and Pandorf (Ref. 19); open triangles,
Ahlers (Ref. 20).

bye temperature at absolute zero, well estab-
lished for other materials, therefore holds also
for quantum solids.

We would like to thank D. M. Lee for permit-
ting us to quote some of his results before pub-
lication.
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A theory of ion-wave instabilities is presented which takes into account the self -con-
sistent inhomogeneities generated by currents flowing along magnetic field lines. It is
found that for T~ -&;, the minimum unstable current is reduced from the electron to
approximately the ion thermal speed. The result is attributed to the drift-wave instabil-
ity caused by the inhomogeneities produced by the driving current.

For many years it has been known that, for
T, -T,, the minimum current for ion-wave in-
stabilities (or the so-called two-stream current
instabilities) predicted by the existing theories'
is too high in comparison with experimental re-
sults. ' In this Letter, we present a theory which
takes into account the se1.f-consistent inhomoge-
neities generated by currents flowing along the
magnetic lines of force. In our model, the in-
homogeneities are produced by the driving cur-
rent alone. The plasma is uniform when the
driving current vanishes. It should be noted that
our model is different from Kadomtsev's' model
in that the inhomogeneities in his model are in-
dependent of the driving current. As has been
noted by Bernstein et al. ,

' it is inconsistent to
assume currents along the magnetic lines of
force and, at the same time, a uniform plasma.
The importance of the self-consistent inhomoge-
neities in a current-carrying plasma is clearly
demonstrated by our results. For T, —T, , our
theory predicts a minimum unstable current of

the order of the ion thermal speed rather than
the electron thermal speed predicted by the exist-
ing theories. ' Much of the stellarator data,
particularly current work on anomalous resis-
tivity, shows good agreement with our results. 3

It may be noted that the stability criterion pre-
dicted by our theory can also be interpreted as
the stability criterion for a low-P sheet pinch.

In this communication, we can only outline the
general approach and present the main results
of our work. Full details will be given in a
separate paper. Consider a low-P (P=kinetic
pressure/magnetic pressure) collisionless plas-
ma, consisting of electrons and protons, in a
constant external magnetic field (B,z) with cur-
rent along the field lines. We consider a one-
dimensional model in which all quantities may
only depend on the x coordinate. Under three
reasonable boundary conditions, it can be shown

by extending Harris' solution~ that for a low-P
plasma the most probable self-consistent equilib-
rium distribution in the presence of a uniform
external magnetic field is given by

f . = 1— x+—'-x exp( —v . [(v~~ V.) +v ]j,
2 tanh(xo/L, ) v,

(1)w"'v„.' cosh'(x, /L) 0,.

where L, =[h(T, +T;)/(2nNoe')]' c/V characterizes the width of the current layer, V= ~V, —V, ~
is the

uniform relative streaming speed, c the speed of light, vo,. =(2 h~T/m)'~' the thermal speed, Q,. =q,. o/

(m,.c) the Larmor frequency, and T, , m, , and q, the temperature, the mass, and the charge of jth spe-
cies, respectively. N, is the maximum number density. The boundary conditions are these: (i) The ex-


