
Vox, UMz 2$, NUMBER $

H. Pierre Noyes
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

(R888lved 14 April 1970; 18v188c1 IYlRUUScrlpt r8081v8d 25 eJU118 1970)

A general unitary phenomenologi. cal descxiption of strongly interacting three-particle
systems is developed in terms of two-particle phase shifts and binding energies, two-par-
ticle wave functions inside the range of forces, and the three-body wave function in the
region where all three force ranges overlap. The two-particle external and internal pa-
rameters are unambiguously separated from each other and the same parameters can be
determined from many different experiments, while the three-body parameters xefer to a
specific system at a specific enexgy.

In order to calculate the wave function ox even the on-shell scattexing matrix for three-particle
states, it is necessary to know not only the binding energies of all two-particle subsystems and their
phase shifts at all energies but also the interior wave functions connected to these asymptotic para-
metrizations. Due to virtual pion emission and absorption, any system containing strongly interact-
1Qg two-particle subsystems will experleQce three-particle forces lQ any regloQ whose per lmeter ls
less than 3h/m, c', complete knowledge of the two-particle subsystems does not determine the dynam-
ics of any stxongly interacting three-particle system. It has been shown that if the wave function is
known inside this three-body-force region, the exterior three-particle wave function can be calculated
by solving convergent one-variable integral equations. In this Letter we convert this demonstration
into a practical method for analyzing three-particle systems by proving that it is possible to parame-
trize this interior wave function in such a way that only three outgoing particles are present (i.e., that
the on-shell three-body T matrix obtained by solving this equation is unitary). These interior parame-
ters can be fitted to experiment at a single energy of the three-particle system; they represent an ar-
bitrary (energy-dependent) parametrization of the consequences of unknown two- and three-body forces
in the interior region. Additional parameters will have to be included to specify two-particle interior
dynamical quantities. These can be independently determined eithex by making a complete analysis at
additional energies of the three-particle system, or by using different third particles as probes.
Hence this interior-exterior sepax ation m, akes possible the construction of the wave functions of two
strongly intexacting particles inside the range of forces from quantum mechanical observables. To the
extent that this nonrelativistic quantum mechanical prescription makes sense, this description should
be the same whatever the third paxticle in the system.

The Kick argument' tells us that whenever the outgoing waves in the two other Faddeev channels
(wlllcll Rl'e tile pllysicRl IIlecllRlllsnl tllRt pl'obe tile Illtel'101' two-particle wave functions III tile extelior'
three-particle region)" contain momenta exceeding pion production threshold within the system probed,
this three-particle description breaks down. But even in this situation, the hadron "soup" which is be-
ing probed may have average properties independent of the mode of excitation. To the extent that this
is true, our analysis will still give correctly the probability of finding that part of the "soup" which is
connected to two, and only two, specified hadrons in the asymptotic region. The a px iori limit of va-
lidity of our description is for distances averaged over regions of order I/m, c, or momenta less than
m c; only the study of specific systems will reveal whethex it. holds down to shorter distances and for
higher momenta.

We assume' that the two-particle half-off-shell t matrices are bounded by
OQ
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=7 '(P) 1+(&'-u') dP'c'(P')

(

~ '(p')=exp[f5 '(p)]sin@ '(g)/p and J 2dp'C(p') = l. (2)

Since such two-particle t matrices can be shown' to satisfy a Lippmann-Schwinger equation in the
three-particle Hilbert space, the unitarity of the T matrix follows algebraically if they are used as
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driving terms in the Faddeev" equations. We can extend' this unitarity proof to any convergent sys-
tem of equations for the on.-shell 7' matrix provided the difference between this system and the Fad-
deev equations vanishes on shell. We do not have to assume that the three-paxticle 7' matrix itself
satisfies a I ippmann-Schwinger equation, and thex efore can a11ow unspecified three-body forces to be
present.

The amplitudes M~8 defined by Faddeev' can be shown to satisfy two-variable equations'" by intro-
ducing the coordinates p for the interacting pair and q for the free particle defined by Lovelace" (with
the on-shell restriction P'+q' =z) and making the partial-wave decomposition

&RIM 8(z)lfo~.&=K~~M~~"(p, q;z)l'z~x'(p, q)

Since the outgoing wave is generated from this amplitude by multiplying by the singular factor (p'+q'
-z) ', we can define an interior wave function in momentum space by subtracting out the value at the
singularity; explicitly,

I, ~ s( p, q; z)-=M~ ~(p, q;z)-M, „s(p, (z —p')'/';z)=—(p'+q' z)E,—~"s(p, q;z)Tg„s(p;z).
If I, z is known, the three-paxticle on-shell 7' matrices satisfy

M „'(p, (z-p')'"; z)= T,&'(p-;z)
=l '(p, p.;p')2(z-p') '"&(p'+q.'-z)& s&~i,&x~,&

where

(z p—') —'/'f dp "f + dp" t '(p p;p') Q Q K, ~,.~. &F, „.&8(p' q'z)T;~. '/8(p'. z)
y&a l'V

OO

-(z-p')-'" dp" dq ' „'„'" P QZ, „,, "/Z, .„./'(p;z), (5)
0 2 . J&c/V

p'=p" +q"-z+p', q, =p'tanp, ,+(z—p')'/'seep„„cosy„, =[m„m„/(m +m, )(rn, +m, )]",
Z, x, v & are purely geometrical recoupling coefficients. '

As already noted, the algebraic form of these equations guarantees that the T matrix determined
from them will be unitary provided that the terms by which they differ from the Faddeev equation van-
ish in the on-shell limit. This happens automatically for those terms which are independent of the in-
terior functions F, since these are proportional to

(p'+q'-z) '[f.'(p, p;z q')-f. '(p, Ã-;p')],

and Kowalski" has shown that this difference is always proportional to (p'+q' —z) times a remainder
function which itself vanishes on-shell. Equation (4) has removed the (p'+q'-z) ' singularity from
the terms proportional to the F's by definition. Therefore any (convergent) complete set of functions
which have no discontinuity acxoss any of the three- or two-particle branch cuts in the on-sheH. limit
can be used to expand the intex'ior wave function.

This proof of unitarity still fails if the operator for inverting Eq. (5) does not exist. The existence
of this operator was proved in CS, but the proof was cumber some and required a finite range cutoff R.
By using the bound [Eq. (1)] justified above, the kernel in the last term of Eq. (5) which has to be inte-
grated over p' becomes

2il/2 +tel'V I ~(P ) '4 I 2i2 2 2+tgl'g' = Qlkl'V (pap

where

L, =([p'+ (z-p')'/'sing„&]'-p' cos'p &j/cos'p, „&. (9)

The asymptotic convergence of this kernel follows immediately from the fact that for z &p' the limits
have complex conjugate imaginary parts and hence that the xesult of the y integration is bounded by 2m;

by making the change of variable (p' —z }' '=r sing, p' = r cosy, it then follows that if ~(p) is bounded'

by A/p', the integral J dp'f dp" Q'(p, p') converges at least as well as J ~'dr/r' at the upper limit.
The remaining singularity across the physical three-particle branch cut can be handled in the same

way as the singularities in the Faddeev-Lovelace" (or Amado" or Mitra" ) equations for separable in-
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teractions. Because we have kept the interacting pair in the physical region and allowed the free par-
ticle to become virtual, only this singularity occurs; "potential singularities'"' are absent, and only
physically accessible wave functions need be known. The implicit limitation to systems with no two-
body bound states is easily removed" by separating out the bound-state poles in the two-particle t ma-
trices and coupling in the additional terms they contribute to Eq. (5). The appropriate branch cuts for
elastic scattering and rearrangement collisions then appear automatically in the unitarity relation.

Since our proof of convergence given above guarantees the existence of a resolvent kernel for Eq.
(5) even in the zero-range limit p, -~ for the two-particle interactions, in this limit Eq. (5) provides
one-variable integral equations for the three-particle T matrix using only physical two-particle phase
shifts and binding energies formally valid at any energy. Whether this is a good physical approxima-
tion will depend on whether the interior effects are physically significant or not"; in particular, we
know that this limit cannot be used for three-particle bound states since Thomas" has shown that the
zero-range limit gives infinite binding to the ground states of such systems.

This Letter provides the necessary~ formalism for the inclusion of whatever knowledge is available
about two-particle systems in three-body calculations. Three types of parameters occur. The two-
particle scattering amplitude ~(p) is available from experiment for stable two-particle systems, but
must be determined from three-particle experiments in the case of unstable particles. Our formalism
allows this to be done uniquely, utilizing all interference terms in all regions of the Dalitz plot, since
the remaining parameters can be measured independently. The second set of parameters refers to the
interior two-particle wave functions for bound and scattering states. Vfe have demonstrated that, in
principle, these can be determined from three-particle states, and their uniqueness verified by show-
ing that. the same parameters are determined at different three-particle energies or for different
third-particle probes. Because of pion production, these wave functions are, strictly speaking, mea-
sured only in the sense of an average over distance of order )f/m, c, but the description might turn out
to have a higher accuracy than that. Finally, there are parameters which refer to the three-particle
interior region. These can be computed once some assumption is made about the two- and three-body
forces in this region, or assigned phenomenologically to fit three-particle experiments at a single en-
ergy. If they are chosen appropriately, strong energy dependence of these parameters would demon-
strate genuine three-particle "resonances" not due to the pairwise interactions of the exterior region.
Since they refer to a region whose perimeter is approximately 3@/m„e in length, a small number of
such parameters must suffice at low energy; otherwise it would be possible to measure detai1s of the
interior wave function smaller than any exterior wavelength. Study of the exterior region in the three-
body problem has demonstrated that we do not yet know whether the basic two-body interactions are
local or nonlocal, 4 but now has yielded a method for investigating that question experimentally. It is to
be hoped that the study, both theoretical and experimenta1, of the parameters which describe the in-
terior three-particle region will clarify still further the extent of our understanding of strong interac-
tions.
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LIMITS ON MAGNETIC MONOPOLE FLUXES
IN THE PRIMARY COSMIC RADIATION FROM
INVERSE COMPTON SCATTERING AND MUON-
POOR EXTENSIVE AIR SHOWERS. W. Z. Os-
borne [Phys. Rev. Lett. 24, 1441 (1970)].

Etluation (5) should read

1„(E(k))= (x„/a)1,(k).

MULTIPION PRODUCTION IN DEUTERON-DEU-
TERON INTERACTIONS AT 7.9 GeV/c. A. T. Go-
shaw and M. J. Bazin [Phys. Rev. Lett. 25, 50
(19'70)].

The total number of events measured for the
experiment was 1000 events (not 10000 as stated
in the text).

In the formula defining the Reggeized pion prop-
agator on page 53, the a, is the usual Regge ex-
ponent, as (cosh)„/So)"', and not a multiplica-
tive factor as printed.
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