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Within the droplet model for the Ising spin system it is shown that the magnetic specif-
ic heat C& and the susceptibility )(& for constant vanishing pressure and magnetic field re-
main finite in a compressible lattice as the critical point T, is approached from below.
This regularization of C& and )(& is caused by the long-range indirect spin-spin interac-
tion, which is a consequence of the dependence of the exchange integral on the lattice
spacing.

It was pointed out by Fisher' that constrained
"hidden" variables (e.g. , impurity density, elas-
tic degrees of freedom) renormalize the critical
exponents of a system undergoing a second-order
phase transition. In this note we examine the ef-
fect of elasticity on the nature of the Curie point
in an Ising ferromagnet with a compressible har-
monic lattice. The hidden variables in this case
are the deviations u& (m =1, , N; p=x, y, z)
of the mth atom from its rest position R . The
R are determined from the minimum of the lat-
tice potential energy. A spin variable 0 = +1 is
attached to the mth atom. External mechanical
forces K enter the Hamiltonian via a term —u™

K (summation over repeated indices is im-
plied). If the thermal averages (u™)are con-
strained by prescribing a strain tensor e&, = e5„„
where (u„)= e„„A„,then, according to Fish-
er's theory, one expects that the specific heat
C„ for constant e (i.e., for constant volume V)
remains finite at the Curie point, displaying a
cusp-shaped maximum at T, . The magnetic sus-
ceptibility X„at constant V should still diverge,
but also has a renormalized exponent. The basic
hypothesis made in the theory is that for con-
stant forces K, C~ and y~ behave "ideally", as
in a rigid lattice. For example, it is assumed
that C» ~(T, -T) ~ for T-T, -0 —= T, , with a'
=~l6, as is obtained from exact series expansion
methods. '

In contrast to this hypothesis we find that C~
and y~ remain finite in the compressible Ising
ferromagnet as T-T, . Specifically, we start

mD mnp n
S 2 p pv v (33

In H~ the spin system is formally decoupled from
the lattice. H s+&s Hs can be considered as
an effective Hamiltonian for spins on a rigid lat-
tice in the (temperature-independent) configura-

from an Ising model for spins on a simple cubic
lattice, with an exchange integral acting only be-
tween nearest-neighbor (nn) spins and depending
on the distance between them. For simplicity we
consider only the case K =0. In the Hamilto-
nian H=H +H +H „, H describes harmonic
phonons, Hs the Ising spin system, and Hs„ is
the spin-lattice interaction, which is obtained by
expanding the exchange integral in powers of u™
and keeping only the linear terms:

Hst = -u„(V„Z ")v o" =--u„F„, (I)

with 4 "=Z(~R -R"~) = J(a) &0. The coupling
term (I) can be transformed into an indirect spin-
spin interaction with the help of the unitary trans-
formationAu A. ~=u™+v™,where e„=-D„,"I',".
The D„, "is the static one-phonon Green functi. on
of the lattice, described by H~, and may be ex-
pressed in terms of the frequencies co, (q) and
polarization vectors e'(q) of the normal modes
with wave vector q, polarization index j = 1, 2, 3:

D mn — g dq sI& (q) (q) iq(R - R" )
(»)' p a,'(q)

where p denotes the mass density. The unitary
transformation changes the form of the Hamilto-
nian into H~=H~+H~+Hs', where
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B1"1= --,'Z, „&'1[V,V,a„.(R)]Z„„"', (4)

where F„„'=p-, 1;1&,1'1P„' . In order to obtain
a simple asymptotic expression for D„,(R} for
large

l Rl, we approximate u,.' in (2) by P,. ~,.'/3.
This average tends to (qv)' for qa «I, where v
is an average phonon velocity. We then get, for

tion QR ). H~' is an elastic energy due to the
strains which are caused by the spin-lattice forc-
es F . This interaction between spin bonds was
already obtained by beaks and Larkin. ' Its effect
on the magnetic critical point was discussed by
Pokrovskii, e using a cumulant expansion of the
free energy and scaling-law' arguments but ne-
glecting its long-range part, which is, however,
of decisive importance near T, as we shall see.

The problem is now to calculate the spin free
energy with the Hamiltonian H~'~f. One might
think of including H~' in the numerical calcula-
tions of critical exponents using series expan-
sions, We shall use R less ambitious approach
which employs the droplet model approximation"
for the free energy. First, two x'igorous state-
ments about H~' can easily be verified: (i) H, '

x/o j ~0 for any spin configuration and (ii) 8~'ji)
= 0 in the ferromagnetic ground state with Rll
spins "up" (cr =+I). From this we conclude that
II~' opposes spin ordering and thus yields R re-
duction of the critical temperature. Consider
no%' R sp1n coDflgul RtloD ln wh1ch t%'0 localized
clusters of down spins (one cluster centered at
the origin, the other at R) are embedded in a uni-
form seR Qf Up. spins. ERch of these dl oplets
is assumed to contain a large number l'~ (1', = I, 2)
of down spins, such that their surface may be
taken to be smooth on a macroscopic scale. The
forces F due to nn spin bonds with o a" = -1
are nonvanishing only near the surface of a drop-
let and are normal to it, with P F" =0. The
absolute value of the force on the neth atom with
spin up (down) depends on the number and posi-
tion of the nn down (up) spins. In a simple cubic
»ttice, I F"(8~/Sc1) 'I takes the values 0, 2, 2&2,
2W3. We replace these microscopic forces by
suitable averages, F(r"~)= k " and F(r "~ + R)
=F "with g F ' =0 where r" runs over the
spin bonds which are cut by the surface of the ith
d»pl«, and ~~~~~ IF"'I=-fin/~~l, f~2. »e
energy of this spin configuration is H~'f~= E"~
+ E~'~+ E~"~, where E~'~ are the "self-energies"
of the droplets and E(1~ 2) 18 their interaction ener
gy. If these droplets are far apart, a «max(lri'1l)
« lRl, then we have

lRl »a,

D„,(R)--b„,(4~@6'l Rl) -'. (5)

For closed surfaces the "force dipoles" E,„~'~

are proportional to 5,„. From this, together
with (5) and (4}, one finds that the long-range
part of E " vanishes. The self -energy of a
sphex'1CRl clustex' %1th 1"Rdlus r »0, containing
I = (411/3)(r/a)' down spins, is found to be

Z, = [(36~)'~'u-b' ]E "'+M"',

with

b = (36')'~'(&, fZ)'n~',

where y„= (V/J)s J/8 V. We also put Mv = (nz')
whex e M denotes the atomic mass, n the particle
density, and v' the compressibility of the har-
monic lattice (without spin-lattice coupling). In
(6), the first term in brackets is the surface en-
ergy of the droplet as is obtained from H~. The
term -0'l' '+M' ', with 6, 0'~0, arises fx'om
II~'. The term bE'~' is entirely due to the long-
range part of D„„. No simple expression is found
fo1 6 ~

%'hlch lnclude8 the short-range pRrt of
Dp p~ but oDe can give Rl guments IndlcatlDg that
5' is of the order of b. For the following discus-
sion, the crucial term in (6) will be bl"'.

In the droplet model, the spin fx ee energy is
approximated by the free energy of a "gas"' of
noninteracting globular droplets (of down spins).
The difference, AG(T, B) = G(T, B}-G(0,B), of
the total free energies per spin, including a mag-
lletlc field B (ill up clll ectlo11), ls glvell by

b.G= —kB Tg~, exp( —q, /k~ T, I,),

with y=exp( —gp, ~B/2k~T). y, =I;, TS, is the-
free energy of an l droplet. For I, we insert
Eo. (6), which differs essentially by the term
O=E' ' from the droplet energy in R rigid lattice.
The entropy S, is obtained from the statistical
geometry of compact spin clusters. The counting
arguments involved should be independent of
whether the lattice is rigid or compressible. In
our model the elasticity of the host lattice only
causes a change in the energy (H~-H~'1') of the
spin system. The spins are otherwise considered
to be attached to a rigid lattice. The detailed
form of the Hamiltonian does not enter into the
usual expression' for the entropy, S, =k, (sl"'

t lnl+lnq, ), which—we therefore adopt also for
the compressible lattice. In the ease of R xigid
lattice (b, b'= 0) the term E2" in E, and S, is
usually replaced by /, I &0 &O. Extending the
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arguments given" for this generalization, we
also replace l"' in Eq. (6) by l, assuming only
that 0 &~ &0. Taken together, we arrive at

&G= k,—Tq, +, l 'w'x'y',

g«1: C ""g~t '1— ', (st)
I'( —,'+ n') b

r(n') k, T,
+O(t '); (11a)

(»1: C»""g ~1—2cy'(1 2+')o( „kT/b)'st
+ O(t').

In (11a), I' denotes the Gamma function.
From (11a., b) we get the following results:

(i) For t»t, —= (5/kBT, )'/s, the specific heat be-

(11b)

with m= exp( —b jk,T), x= exp(s(T T,—)/T)j, and
2(36m)'~3J-b' = sk 8T, .

The droplet model is supposed to provide a rea-
sonable picture of the spin system at low temper-
atures. Its validity near T, is less obvious but
will be postulated. In the case y» = 0 (M = 1, rigid
lattice) one then obtains, as is well known, "the
ideal critical exponents expressed in terms of 0
and 7, e.g. , n' = 2-(&—I)/o. In the present case,
y„e0 (m&1, compressible lattice), one easily
verifies that the analytic properties of &G, Eq.
(9), are identical to those obtained for a rigid lat-
tice, except at the critical point, & =0, T = T,
where all derivatives of ~G with respect to T and
& remain finite. This is so because the sums
over l occurring in these derivatives at & = 0 are
convergent for T —T, , since u &1. At the criti-
cal point, &G still has an essential singularity,
the sum over I in (9) being divergent for T& T„
even with M) &1.

Let us look in more detail at the specific heat.
We emphasize that the derivatives of 4G with re-
spect to T and B are evaluated for constant ex-
ternal forces K =0. Thus, —T 'O'AG/8T'= C»
is the specific heat per spin for constant vanish-
ing" pressure. The singular part of C» (strictly
singular only if y„=0) is given by

C»"'8~t "f dxx' 'exp( —x' —&x'" '), (10)

where t= (T, T)/T, and f—'= (st) "~ k, T, /b. In
(10) we have approximated the sum over I by an
integral. Its extension to the lower limit, +0, is
convenient and does not change the leading tem-
perature dependence of C~ as t-0. For conve-
nience we now put 0 = 2A. Then the integral in
(10) may be expressed in terms of parabolic cyl-
inder functions. We shall give only the asymp-
totic expansions for large and small values of
the parameter &:

haves like in a rigid lattice, C~""~~t, with o.'
= 2 —(7—1)/o and b given by Eq. (7). s is a num-
ber O(1); see below. (ii) For t «t„C»""&ap-
proaches a finite value, linearly in t, as t-0.

In order to get an idea about the size of t, we
use' J=0.4ksT, (our J is equal to J

~,
of Ref. 3),

neglecting the shift b' of the critical temperature.
From sk~ T,= IOJ we then find s = 4. Taking
f=2.5, we have t, ' '=12y„'k BT,n»'. The choice
y„=1, T, =100'K, m=10" cm ', and &'=10 "cm/
dyn yields t, = 3&&10 . This value is only illus-
trative, ' the important point being the strong de-
pendence of t, on y„.

A similar behavior is found for the susceptibil-
ity: y» ot &, for t»to with y'= (3—T)/v, and
X~ = const for t «to

Unfortunately, the droplet model in its present
form does not allow us to draw any quantitative
conclusion for T & T, . But the underlying picture
of the effect of H~' on critical behavior is more
generally valid. H~'~~ can be written as an Ising
Hamiltonian with an nn exchange coupling J' de-
pending on the spin configuration (cr }. This
might be interpreted as follows: Spin-lattice
forces, due to fluctuations in the spin bonds,
cause inhomogeneous strains in the lattice which
modulate J', i.e., T,'f . A spatial distribution
of values of T,'ff leads to a smearing out of criti-
cal singularities. Clearly, these considerations
also apply to the paramagnetic critical region.

I wish to thank Dr. J. Swift for a critical read-
ing of the manuscript.
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the naive values 3 and 3 due to the residual interaction
between droplets (excluded-volume effects, short-
range part of d '2)) .

~Numerical computation of the integral in Eq. (10)

shows that lnCz""~ begins to deviate from the straight
line -&'lnt at t = 10tp and is nearly independent of lnt
for t ~ 10 tp. The author is indebted to Dr. H. Horner
for help in these calculations.
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Adjustments to proton-proton elastic scattering data at 9.690 and 9.918 MeV have ap-
parently resolved a discrepancy between the data and current energy-dependent phase-
shift analyses. New data at 13.600 MeV are also presented and are compatible with the
phenomenological analysis. These results indicate that the energy-dependent fitting of
p+p data in the region of 10 MeV is now satisfactory.

A strong discrepancy in the phenomenological
analysis of proton-proton scattering near 10 MeV
has been pointed out by Holdeman, Signell, and
Sher' (HSS). They indicate that the consensus of
experimental information' on scattering cross
sections near 10 MeV results in a 'S, phase that
is markedly below reasonable phenomenological
predictions, "that in order to fit the data, seri-
ous readjustment of fits to a number of well-ac-
cepted data at other energies would be necessary
(see Figs. 2 and 3 of Ref. 1).

To help resolve this discrepancy we undertook
two courses of action. First, since the 'S, phase
is strongly affected by the absolute values of the
data, we planned a thorough examination and re-
calibration of all experimental parameters that
affect the absolute normalization in our previous
measurements' at 9.690 and 9.918 MeV. Ke also
restudied the assumptions and approximations
made in the reduction of the data, especially at
small angles. Secondly, we measured an accu-
rate angular distribution at a nearby energy
(13.6 MeV) to help tie down the absolute value
and search for possible energy-dependent sys-
tematic errors.

With one exception, the recalibrations and re-
measurements produced no significant results
outside expected errors. We did find a gross
systematic error in the device used to measure
the width of the slits in the detector; and the val-
ue of the G factor and the cross sections are di-
rectly affected. The correction increases the ab-
solute values about 2%; the final corrected val-
ues are given in Table I. As can be seen in Fig.
3 of Ref. 1, this correction brings our absolute
values close to the predicted values of the multi-
energy analysis of Sher, Signell, and Heller. '

Table I. Differential cross sections for p+p elastic
scattering.

e1ab
d.eg o

10 F 00

12.50

15.00

17.50

20.QQ

25.00

30.00

35.00

4o. oo

45.oo

50.00

(e)
mb/sr

296.22

212.58

194.83

191.72

189.03

185.92

180.31

172.44

161.56

148.37

135.58

ec.m ~

d.eg ~

20.05

25.o6

30.08

35.09

40.1Q

50.12

6o.13
7o.14

8o.15

90 15

100.15

9 ~ 918 MeV

~(e),
mb/sr

74.83

54.18

50.20

5o.o4

50.09

51.11
51.91
52 ' 53

52.69

52.46

52.78

Relative
Error

/0

o ~ 8o

o.41

0.39

0.37

0 ~ 37

0.41

o.34

o.34

o.34

0.36

o.36

Absolute
Error

0.90

o.56

o.54

0.52

0.52

o 55

0.50

0.50

0.50

0.52

0.51

e lab
cl.eg,
13.00

15.00

20.00

25.00

30.00

0(e)
mb/sr

215.29

201.79

196.07

192.56

186.9o

ec.m.
d.eg .
26.o6

30.07

40.09

50.11
60.13

9.690 MeV

a(e)
C .Iil ~

mb/sr

54.98

51-99
51.96

53.82

Re1ative
Error

/0

o.41

0.39

o.36

o.4o

o.41

Abso1ute
Error

/0

0 ~ 55

0.53

0.52

o.54

o 55

The error of the absolute scale is slightly small-
er because of an improved method of slit mea-
surement. The relative relation of the values
and the relative errors have not changed.

The experimental method used for the 13.600-
MeV data given in Table II is the same as pre-
sented in Ref. 2 except that the geometry-factor
accuracy has been improved to +0.20%.


