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This note shows that the effect observed in the Schwarz-Hora experiment, in which
an electron beam passing through a crystal irradiated with laser light proceeds to a non-
fluorescent screen and radiates light the same color as the laser, is probably caused
by electron bunching. The crystal provides a sharply defined region of electric field
amplitude which makes bunching possible.

Schwarz and Hora' have reported that 50-kV
electrons diffracted through a thin (=1000 A)
crystal produce luminous spots on a nonfluores-
cent screen when the crystal is illuminated by a
laser beam traveling at right angles to the inci-
dent electron beam and polarized so that its E
vector is parallel to the electron motion. The
spots occupy very nearly the same positions on
the screen as the normal Laue spots (observed
with a fluorescent screen) and have the same col-
or as the laser beam. The authors suggested
that a quantum mechanical effect is responsible;
but others' have questioned this hypothesis, sug-
gesting instead that the electric field of the light
produces a sinusoidal velocity modulation of the
electron stream, causing bunching of the elec-
trons at the screen, and, consequently, a period-
ic excitation of the ele ctrons in the screen —in ef-
fect, an optical klystron. Schwarz and Hora
themselves had also mentioned the possibility of
velocity modulation. The effect is not observed
when no crystal is present.

One purpose of this note is to suggest that the
function of the crystal is merely to provide a
short region with sharply defined edges within
which the electric field is reduced by the dielec-
tric constant. Since the electric field is normal
to the surface of the thin crystal, the electric
displacement is continuous across the surface
and the field inside will be 1/e„ times as strong
as the field outside.

Consider a laser beam polarized in the y direc-
tion and having an intensity profile P(y). The
electric field amplitude is then
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The amplitude of the velocity increment has a
maximum,

bv, „=2eE /mu„
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whenever

d =&(v/vo)n (n an odd integer).

Now suppose the electric field amplitude is

e(vt) =E, e xp(- vt' /2(r').

L) GHT

The velocity increment produced by this field is
-(e/m)ie(t)dt and may be written as

bv = (e/m) [E,((u, ) cos(a&, t-k, x)

-F, ((u,) sin((u, to-@ox)],
where e is the magnitude of the electronic charge
and F, (~) and F, (u&) are the Fourier transforms
of the even and odd parts of E(vt), respectively.
Relativistic effects have been neglected. Suppose
the light beam has uniform intensity for ~y( &d /2
and is zero for ~y~

~ d/2. Then E(vt) has the val-
ue E, for ~t ( &d/2v and is zero outside this inter-
val and

where Zp is the impedance of free space . An
electron crossing this beam at position x with
velocity v, as shown in Fig. 1(a), will experience
an instantaneous field
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e(t) =E(vt) sc[ou;,(t+t,)-k, j,x (2)

where &u, is the optical frequency, k, = &u,/c, and
tp is the time at which the electron is at y =0.

FIG. 1. (a), (b) The experimental arrangements and
coordinate system without and with the crystal, re-
spectively. (c) The notch in the electric field ampli-
tude caused by the dielectric constant of the crystal.
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Then
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where L is the distance from the crystal to the

x cos ((do to-ko x) .
The ratio of the amplitude of (8) to (5) is (v)'"ue "
where u =o&u, /&2v. In Schwarz and Hora's exper-
iment, &F0=3.86x10"/sec and v =1.237x10' m/
sec. If we assume that their beam had a Gaus-
sian distribution with 0. =10 ' m, then we find u
= 220. Clearly no observable interaction should
be expected in this case, since the Av „given
by (5) is approximately the largest obtainable
with a given Eo.

On the other hand, with the crystal in place,
as in Fig. 1(b), the electric field profile has a
sharp-edged notch in the center where the field
is reduced by the factor 1/e „as in Fig. 1(c).
For this case, since d «o, we can neglect the
exact field variation with y in the crystal and
write:

E(vt) =E, exp(-v't'/2o')

(1-1/e„)E„ Iv t I
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The output is then simply (8) minus (1-1/e„)
times (4). Since (8) is negligible, the expected
modulation with the crystal in place is

1 —2e . (dod
gg) =- 1-—E, sin
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We note that in this and previous expressions

&u, d/2v = v (c/v)(d/i).

In Schwarz and Hora's experiment, v/c= 0.41,
and they report using crystals for which d/x
ranged from 0.123 to 0.41. Thus, for their ex-
periments, 0.87 ~m, d/2v ~2.9. Some of their
better results were obtained with 1000 A thick
crystals. For these, v, d /2v =1.56, which is
close to the optimum value of &/2.

Assume for the moment that the electron beam
is much smaller in diameter than the optical
wavelength but still large compared with the
electron wavelength. The electrons proceed to-
ward the screen and become bunched because of
the sinusoidal time dependence of the velocity.
The harmonic content of the current at the screen
is determined by the bunching factor'

screen and e t/", is the beam energy. In Schwarz
and Hora's experiment, Vo: 5&10 Q L:0o25 m,
e„=1.8, and E„=2x10'V/m, giving B=4.4
xsin(~p/2v). The ratio of the amplitude of the
mth-harmonic current to the dc current is I /
Id, =2J (mB), where J (u) is the mth-order Bes-
sel function of the first kind. Thus the funda-
mental component has its first maximum for 8
= 1.84. Since the bunching factor is proportional
to L„classical theory predicts that the funda-
mental current and presumably the emitted light
should have the maxima and zeros associated
with the Bessel function as L (or V,) is changed.

The thermal spread of the electron energy
leads to debunching. The spreading of the bunch
is hy = 5v/v, where 5v jv = (1/W2) (kT/e V,) is the
fractional thermal velocity spread in a beam, k
is Boltzman's constant, and T is the absolute
temperature of the electron emitter. If we as-
sume that kr =0.1 eV, Schwarz and Hora's ex-
periment gives Ay =0.35@10 ' m. The space be-
tween bunches is X,v/c=0. 201x10 ' m for the
0.488~10 '-m laser wavelength used. Thus, the
fundamental component should be small com-
pared with its maximum value and should fall off
very rapidly with decreasing V, (or increasing
L). The dependence upon Vo agrees qualitatively
with that reported in the experiment.

In the foregoing analysis, we have assumed the
velocity of light in the crystal to be c and have
neglected bending of the E lines at the crystal
surface. With crystals only A/4 in thickness,
the propagation is probably in the form of a guid-
ed wave having a velocity very nearly that of free
space; but there may well be a significant phase
change with y at a given instant of time. Thus,
the above results for the case of the crystal in
place should be considered only as approxima-
tions. The II component of the light has negligi-
ble effect.

Let us now consider the effect of optical phase
shift across the profile of the electron beam.
First, we assume a parallel beam of electrons
for which the beam diameter is much greater
than the electron wavelength. If the material de-
fining the sharp edges needed for producing the
velocity modulation is an amorphous dielectric,
there will be no I aue diffraction and the elec-
tron beam will proceed to the screen with essen-
tially no diffraction or change in diameter. The
relative optical phase picked up by each part of
the beam in the x direction will be preserved in
the beam as it goes toward the screen. This is
depicted in Fig. 2(a) in which the dashed lines
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UNIT VECTOR NORMAL TO
SCREEN

n, lie in a plane. Consider the special case in
which n„n;, and n, all lie in one plane. Then
K and n, are also in the same plane and the re-
sults become somewhat simpler. The angle P be-
tween no and n, is given by

s in' = cos8 + (c/v ) s in8, (14)
SMOOTH SCREEN

FLECTRON
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FIG. 2. {a) A bunched beam of parallel electrons in-
teracting with a smooth screen to produce radiation
snd the unit vectors used in the description. (b} Defini-
tion of the angles P and 0 for the special case where
n~, n~, and n~ all lie in a plane.

——(n n,)-n, .n; n, +—8, +n, ;, (13)

where no, n„n„and n, are unit vectors in the
direction of the output optical beam, the normal
to the surface of the screen, the electron beam,
and the incident laser light, respectively, and c
and v are the velocities of light and the electrons,
respectively. In deriving (13) we assumed that
n, and n; were perpendicular so that n, n; =0.
The growing bunches of electrons propagate as a
wave. The mave vector K of this bunch wave lies
in the same plane as n, and n, . Also K, n, , and

represent surfaces of constant interaction phase
or bunch phase. If the screen is optically smooth
and if me assume that the radiation from each
point is coherent with the electron bunches strik-
ing there and that it occurs very close to the sur-
face, there should be a coherent beam of radia-
tion produced and directed as shown in the figure
with

2 C2 1/2
n,

O
= (n, n, )—+ (n, n;)

where 8 is the angle between n,, and B„and m/2
& 2 tan '(c/v) &8 &s. Figure 2(b) shows these re-
lations. When sinp is negative, n, and no are on
opposite sides of n, . Note that for normal inci-
dence of the electron beam on the screen, 9=m

and P = -w/2, so that the radiated light should
come off in the plane of the screen in the same
direction as the incident laser light. If the sur-
face of the screen is rough, the radiation from
each part of the screen should have random phase
and there should be radiation in all directions
rather than in a beam.

Electron beams that are not parallel should be-
have in a different fashion. A beam brought to a
fine focus at the interaction point with the inci-
dent laser light should have essentially no phase
shift across the beam profile as the beam diverg-
es and proceeds towards the screen. It is likely
that the velocity wavefronts mill be spherical and,
consequently, the radiation from a smooth screen
should also have spherical wavefronts and form
a diverging beam. The relationship between the
angles is much simpler here since the direction
of the incident laser light does not enter. %e
have (sinP)/c = (sin8)/v, where I8 and 8 have the
same meanings as before [see Fig. 2(b)]. This
is very reminiscent of Snell's law. For v = c,
the angles are equal just as if the electron beam,
radiated beam, and screen behaved as incident
light beam, reflected light beam, and mirror,
respectively.

A converging beam brought to a fine focus at
the screen after passing through the interaction
region with the laser light should not have bunch-
es because the phase of the electric field goes
through many cycles across the large interaction
region.

The effect of using a crystalline material in
place of an amorphous dielectric is to produce
the Laue spots. Each of the Laue spots should
have the same behavior as that indicated in the
previous paragraphs for the amorphous material
and the light from one spot should be coherent
with that from another if the radiation is pro-
duced very close to the surface of the screen.

From the symmetry of the system and the prob-
able mechanisms for producing the radiation, one
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might expect the emitted radiation to be polarized
so that the polax ization vector lies in the plane
determined by K and no. The polarization must
have a nonvanishing component along K so one
would expect the intensity of radiation back along
-K always to be zero.

The Rbove classical RnRlysls shows that R

sharply defined optical electric field or a sharply
defined notch in such a field can produce bunching
in an electron beam. This may partly account
for the effect Schwarz and Hora observed. Even
though the density of electrons in their experi-
ment was only one electron per fifty "bunches"
in the primary beam, there is still time coher-
ence between electron beam charge and current
density at the screen and the electric field at the
interaction regi. on.

However, a quantum mechanical treatment of
the problem now being developed seems to indi-
cate that true quantum phenomena may be pres-
ent. In particular, our wave equations predict
that the electron bunching for monochromatic

e].ectrons obeys the classical Bessel-function re-
lationship only if kv, 'y/(4e Vov) «7?/2. For S&u, 'y/
(4eV,v)»w/2 and (4eEov/h(vo') sin((u, d/2v) «1,
the bunching appears to vary sinusoidally with
distance Rnd thus not decay to zero as y - ~. If
further study supports this finding or predicts
other nonclassical effects, the quantum mechani-
cal analysis will be reported in a future paper.
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The attenuation of first sound near the lambda point can be interpreted as being due to
two phenomena: (1) a relaxation process described by Pokrovskii and Khalatnikov occur-
ring only below tbe lamMa point, and having a relaxation time of $ /C& where C2 is the
velocity of second sound and $ is a coherence length of magnitude 1.36&& 10 8 (7'?,-T)
cm; (2) a critical attenuation which is nonsingular and symmetrical about T~.

In an earlier investigation Barmatz and Rud-
nick' (BR) in an effort to determine the thermody-
namic first-sound velocity near T ~ made mea-
surements at the low fxequency of 22 kHz. These
measurements were sufficiently accurate, and
the approach to T„sufficiently close, that attenu-
ation and dispex sion effects were measurable.
Because of the low frequency, the results were
necessarily inaccurate. The purpose of the pres-
ent investigation was to use essentially the same
apparahls over Rs wide R fl equency rRnge Rs
possible, and we repoxt here the results of the
attenuation measurements.

The frequency range is 16.8 kHz to 3.17 MHz
in He II, and 600 kHz to 3.17 MHz in He I. %ith
this frequency range, Rnd microdegree tempera-
ture resolution, the measurements yield gx eater
detail about the nature of the attenuation than has
previously been reported. In particular, Rt R

frequency ~, the maximum attenuation is unam-

biguously shown to occur at a temperature T,
below 7'„, such that ~s '=const, where a=~T~
-T(. Recently there has been much theoretical
speculation on the natux'e of' first sound at lamb-
da transitions, xesulting in a bewildering array
of sometimes conflicting results. While there
are instances where there is partial agreement
between such predictions and our data, we know
of none which completely account for the results.
In view of this, we make no attempt at R con-
scientious comparison of the data with existing
theory, except Rs regards the relaxation theory
fix'st suggested by Landau and K3lalatnikov. Qur
results Rnd this situation point, Up the need fol
a. unified and complete theory of the attenuation
of sound near the lambda point of helium.

The apparatus, except for minor modifications
to improve the acoustic response, is described
by BR. The acoustic element is a, copper cylin-
drical resonatox 2.5 cm long and 2.5 cm in di-


