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lower frequencies when +7~«1, sound travels
at the adiabatic velocity corrected by the coupling
to second sound. " In the frequency and tempera-
ture range investigated by Abraham et al. ,v' u)T~
»1. A possible interpretation of these velocity
measurements is that the decrease in velocity
observed as the frequency increases arises from
a transition from parallel sound to zero sound.
This would require Ac~t & Ecp. This is possible
because Ac~~ may be large and positive if y and 5
are such that the average group velocity (t~) of
the thermal phonons is nearly equal to the veloc-
ity c of the sound wave.

A more detailed discussion of these points
must await measurements of the helium disper-
sion curve to lower momenta and more exact
solutions of the transport equations. We note
that even the recent measurements of Woods and

Cowley still do not reach that part of the spec-
trum that is thermally excited in the tempera-
ture range discussed in this paper.
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This result can be obtained by considering the ex-
treme case when the thermal phonons attain local
equilibrium along a line in Z space (zero-angle scat-
tering). The solution of the Boltzmann equation for
the more complicated problem of small (but nonzero)
angle scattering is being pursued but has not yet been
attained. For a discussion of the relevant transport
equations involved in the calculation, see Ref. 3.

See Wilks, Ref. 16, Chap. 8.
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We present a calculation of the dielectric correlation function in glasses showing how
the assumption of short correlation length for normal modes breaks the momentum se-
lection rules and leads to expressions for the first-order Raman-scattering intensity in
terms of the density-of-states functions and known frequency-dependent amplitudes.

Because of the current interest in Raman scat-
tering and the properties of amorphous solids,
we have been attempting to understand the shapes
of the bands observed in Raman scattering of
glasses. In the most frequently studied sub-
stance, vitreous silica, good data are available

at room temperature' and low temperatures '

but an adequate interpretation of the scattering
in glasses giving the observed bands has been
lacking.

In this Letter we present the outline of a calcu-
lation leading to an equation for the spectral
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scattering intensity in terms of the density of
states of the vibrations in amoxphous materials.
The results axe applied to Raman-scattering data
of vitreous silica.

Minimal assumptions about the vibrational
modes of a glass are made: (I) The vibrations
are harmonic so that they can be analyzed into
normal modes; (2) the vibrations couple to light
through the di.splacement dependence of the elec-
tronic polarizability of the material; and (3) the
cohel ellce lellgtll of tile normal modes ls sllol t
compared with optical wavelengths. The assump-
tloI1 of sllolt collerence lellgtlls yleMS tile bl'eak-
down of the usual wave-vector selection rules
and allows the light-scattering process to occur

from essentiaBy all the normal modes of the ma-
terial. This is the only assumption that is dif-
ferent for amoxphous materials compared with
crystals.

The spectral scattering cross section is pro-
portional to the space-time Fouxier components
of the scatter ing perturbation space-time auto-
correlation function. ' For light scattering we
need to treat the variations in the local optical
dielectric tensor &~8(r, t) of the medium.

Scattering cross sections for all possible ex-
periments are proportional to linear combina-
tions of the space-time Fourier components of
the correlation functions of the dielectric fluctua-
tions

%e consider the modulation of the optical dlelectrlc constant by normal-mode vlbratk. ons by expand-
ing the dielectx'ic tensor to first order in atomic displacements, and express the displacements in
terms of normal coordinates Q;(t) for the jth mode. We have the deceptively simple form

(2)

The derivatives Se/SQ are in general nonzero unless a local symmetry such as inversion symmetry
causes cancellations of the contributions from neighboring atom displacements.

When the expansion in normal modes (2) is substituted in the correlation functions (1) one finds

where

This important xesult shows how the space and time correlations separate for each mode j. To derive
it we have made use of the statistical independence of the normal cooxdinates of different modes. Us-
ing the properties of harmonic oscillators it is easy to show that'

(5)

where n(a&z) = [exp(h~, /kT) Ij '. Thu-s the time correlations are known, and we need only to discuss
the possible space correlations to apply our result to scattering.

The expression (3) with (4) and (5) is quite general. It applies to any vibrational Raman scattering
from solids whether crystalline or amorphous. The distinction between crystals and amorphous ma-
terials lies in the size of the region over which the correlation function extends. The spatial correla-
tion functions of the dielectric fluctuations A(r, j) essentially reflect just the spatial correlations of
the atomic displacements of the normal modes. Hence the correlation range of R(r, j) will be that of
the mode j. In an ideal crystal, lattice dynamics shows us that because of the periodicity of the lat-
tice, the normal-mode vibrations are wavelike with infinite extent. Correspondingly the spatial cor-
relation functions B(r, j) would have a sinusoidal dependence on r with wavelength A., = 27I/qz. The
light-scattering spectrum then can only show frequencies ~,. for which the mode j has a wave vector
q& equal to the scattering vectox' q. This is the usual "momentum" selection rule for crystals which
gives rise to the discrete set of lines seen in crystal spectra.

In a real crystalline sample the mode correlation functions are of finite extent due to various defect
and coupled phonon damping mechanisms but they still extend over distances large compared with the
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wavelength of light. Thus the crystal momentum selection rule remains a useful approximation.
In amorphous materials translational symmetry which characterized crystals is lost causing the

correlation functions to be localized. We assume for the pxesent: discussion that the modes have co-
herence lengths of To optical wavelengths (400 A) or less. Such modes will not be characterized by a
single wave vector and will not give a momentum selection xule.

This assumption of a short range for R(r, j) has the immediate consequence that its Fourier trans-
form has a broad flat maximum around q= 0 instead of being sharply peaked at R particular wave vec-
tor q~. This will be true for all j, so all the modes of the material can give contributions to the light-
scattering spectrum. The spatial Fourier transform of the correlation functions with xange A, in the
limit q~, «1 has the limiting foxm

(& s, )s(r,i)]q =& s, ys(i)A, ' (8

independent of q. &(j) measures the strength of the dielectric modulation of the mode and A& is es-
sentiRlly the volume of the region of cohex'eDce of the mode.

With this Rpproxlmatlon the space-time coIIlpoDents of the dlelectrlc correelatlons fol light-scatter-
ing wave vectors become

~~s. & ~(q, ~) = Z&~s, &s(i)A, '(&/2~, )4~(~, )~(~+~;) + [&+~(~,) ] ~(~-~, )j.
The delta functions &(v+&,) give the anti-Stokes components (upshifted scattered light) and the delta
functions 5(&u-~, ) give the Stokes components (downshifted scattered light). This expression shows
that Rll modes will contribute to the Raman spectrum of amorphous materials but with an unknown

weighting factor composed of the optical coupling tensor &„s &s(g) and the mode volume A

Vile expect the normal vibrations to fall into bands having similar microscopic motions, frequencies,
optical coupling, and correlation ranges, e.g. , stretching bands, bending bands, etc. Thus we will use
the approximation of replacing the terms &(g)(&,.)' by a constant for all the modes of a given band, in
particular assuming this constant to be independent of the frequencies of the modes in the band. The
sum over all modes then breaks into R set of sums over modes in bands. The frequencies are closely
spaced. Thus the discrete sums can be replaced by the density-of-states functions for each band,
where the density of states gives the number of modes pex unit frequency. With these assumptions the
Stokes spectrum shape will be

f s, &s(~) =Z&~~ '"(&/~)[&+n(~)]g&(~).

The sum is over all the bands. The constants
C& '" will depend on the band b. The tensor
components labeled ~P, y& are selected by the
polarization of the incident and scattered light.
g, (~) is the band density of states.

The frequency-dependent factors 1/&u and 1
+n(v) of Eq. (8) change the shape of the contri-
bution from that of a band with density of states
g~(u). This is particularly striking for the low-
frequency bands seen in all glasses which extend
to e = 0 where these vibrational maplitude factors
cause a peak to appear in the Raman spectrum. 2'

Note that the factor 1+n{~) is just the thermal
population of the initial states and occurs in all
expressions for the Raman intensity. The addi-
tional frequency-dependent factor 1/~ is also
rigorously correct for vibrations but is usually
suppressed in discussing intensities. Here where
we are interested in band shapes over large fre-
quency ranges it is important to take it into ac-
count.

(8)

The expression for the spectral shape (8) is the
principal result of our calculation. It shows how
the vibrational density of states of amorphous
matex'ials contributes to the shape of the scatter-
ing spectrum. We see that, even with our ex-
treme assumptions of assigning fx equency-inde-
pendent coupling constants and cox relation ranges
to whole bands, the spectrum can be very compli-
cated due to overlapping bands and differing cou-
pling constants.

As an example of the use of (8) in the interpre-
tRtion of Raman spectrR, we show in Fig. I exper-
imental Raman polarized spectrum intensities
for vitreous silica reduced by the thermal popula-
tion factor [1+n(&u) ] and the full frequency-de-
pendent vibrational intensity factor [I+n(u) ]/cv

plotted together with the density-of-states histo-
gram for vitreous silica calculated by Bell, Bird,
and Dean. ' We see that the factor 1+n(cu) alone
gives apparent agreement with Dean's histogram,
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The fully reduced VV spectral data by them-
selves do not agree well with Dean's calculation.
We think this is due to the different coupling con-
stants C ~.

The low-frequency part of the spectrum con-
tains the modes dominating the thermodynamic
properties. %'e have used our data to obtain a
shape for the low-frequency density of states
which gives a calculated heat capacity tempera-
ture dependence in agreement' with the measured
anomaly. '

We are pleased to acknowledge the stimulation
and encouragement given to us during this work
by T. A. Litovitz and P. B. Macedo.
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but this is misleading. In fact, a large number
of modes contribute at low frequencies but are
most easily detected in the VH spectrum.

FIG. 1. Fused silica. (a) VH polarized spectrum re-
duced by [1+n ((o) )/&o (b) Dashed line, VV polarized
spectrum reduced as in (a); line with dots, VV polar-
ized spectrum reduced by [1+n((o)1. The histogram is
the density of states from the calculations of Bell,
Bird, and Dean (Ref. 6).
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We report a series of Azbel'-Kaner cyclotron resonance experiments in lead and mer-
cury at wavelengths varying from 9 to 1 mm. We observe that in both metals the elec-
tron-phonon relaxation time is frequency dependent (~~ cu in lead), and that the effec-
tive mass increases slightly for the highest frequency in mercury (3 +1 /o at l(, = 1 mm).

The electron-phonon interaction theory pre-
dicts a change of the electron effective mass and
relaxation time when the electron is excited far
from the Fermi energy. In a cyclotron reso-
nance experiment this excitation above the Fer-
mi level can be obtained either by an increase of
frequency' or by an increase of temperature. "
The temperature effect has already been observed
in zinc' and lead. ' The present work is the first

experimental evidence of the frequency depen-
dence of the effective mass nz* and of the relaxa-
tion time 7 in metals.

The theoretical predictions of Scher and Hol-
stein' are the following: When the microwave
frequency becomes of the same order of magni-
tude as the Debye frequency, the effective mass
of the electron should increase slightly and the
relaxation time should decrease as ~ '. We
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