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It is clear that the m and A, levels are unchanged while the spin-2 level and all other even states are
doubled. When considering the eight-point function one can see from formula (6) that the structure of
spin-3 states and higher is affected. It is then clear that the "leg independence" found in Ref. 1 is
due to the oversimplified nature of the problem. As usual the daughter structure is more sensitive
to the details of the amplitude and cannot be determined at the present stage. We cannot analyze the
two-body channel levels (p, f) with the six-point function. Any level structure, if it exists, will ap-
pear only at the four-to-four transition in the eight-point function.

Conclusions. —We have been able to write a part of the six-point function that correctly describes
the p A] trjectory. As a bonus we can discuss the forms of the four- and five-point amplitudes that
are obtained contracting lines. The most interesting result is the level structure that obtains in a
model where all physical requirements are obeyed. For the first time to our knowledge, doubling of
states lying on the leading trajectory is obtained. It is most amusing that the doubling starts at spin 2

as in the case of the A„but we have not yet studied this trajectory.
As a consequence of our results we also believe that other calculations, ' based on scalar isoscalar

bosons that bootstrap themselves, might be radically changed when realistic amplitudes are used.
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It is shown that the connected scattering amplitude for three free particles may be
written {as the three-body energy E goes to zero) in the form

AE ~+BE ~ +ClnE+O(l)

with A, B, and C completely determined by kinematics and the two-body scattering ampli-
tudes at zero energy.

Although many formal and calculational advances have recently been made in the nonrelativistic
quantum mechanical three-body problem, several simple and basic questions remain unanswered. In

this Letter we examine one of these —the behavior of the three-body elastic amplitudes as E, the cen-
ter-of-mass energy, tends to zero. We show that under very general assumptions the connected am-
plitude has the surprisingly simple expansion

'+ pg "'+C 1nE+ O(l),
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where A, B, and C are expressed entirely in
terms of kinematical factors and the two-body
s-wave scattering lengths. '

We study the amplitude for three free particles
of momenta k„k„k, scattering to momenta k, ',
k, ', k, '. The total energy is

E- k +k +k -k +k' +kI 2 3 1. 2 3

where for simplicity we have taken equal masses
and set 5= 2m = 1. For an on-shell amplitude,
E-0 is most conveniently studied in terms of the
variaMes y ~ defined by

k =Z'~' k '=E'~' .

The conservation of energy and momentum {0»;y;
=0) determine the physical range of the y's, in-
dependent of F., and hence the limit E-0 can be
studied for fixed y's.

The terms in T, that diverge as E-O come
entirely from the first three terms in the con-
nected multiple-scattering expansion. Typical
examples of eRch order Rre lepl esented 1n F1gs.
1(a), 1(b), and 1(c). The contribution of Fig. 1(a),
a double scattering, expressed in terms of the
p 8 ls

FIG. 1. {R) Typical double, {b) triple, Rllcl {c) fourth-
order rescattering graphs. The circles indicate two-
body t matrices. The momentum labels appropriate
to unlabeled lines can be obtained by using momentum
conservation and the fact that we work in the center
of xDass

(y y )I K'( b ))I (y + y )& (E ( )I

where, for example, (kl t, (e) lk') is the off-shell two-body scattering amplitude for the scattering of
pair 23 from relative momentum k to relative momentum k' at energy e. We notice that when these
two-body amplitudes have a well-defined nonzero limit as E-O the contribution for Eg. {2) goes like
I/E. To be more precise about the limit E =0, we now state our assumption on the limiting behavior
of the two-body amplitudes:-

(kit,.(E)lk')-~,.(E)+0(O', O", k k)
as both

I kl and lk'I-O, where ~, (E) is the s-wave scattering amplitude for the jth pair;

7,(E) = 4wa, .+i.4wE'~'a, '+ O(E).as E-O, .

where a,. is the 8-wave scattering length; and finally to ensure convergence of the integrals, we need
the weak bound {true except at bound-state poles)

(k I t, (E) lk'& -~
I
1+ lk-k'l

l

"'
These assumptions Rre very weak. They are certainly satisfied by scattering amplitudes coming from
short-range, nonsingular, central potentials, Rnd Rre weRker thRn the usual two-body Rnalyticity as-
sumptions. Using these conditions, Eq. {2) becomes

as E-0. We wish to emphasize that with our choice of variables, the location of the well-known re-
scattering singularity depends only on the y's. ' lt occurs for Fig 1(a) when 1—y,"—y,' —(y, '+y, )'=0.
Hence, the rescattering singularity and the zero-energy singularity are completely independent.
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The A. of Eq. (1) is simply the coefficient of the E term in Eq. (3) summed over the six permuta-
tions of 123. The B term of Eq. (1) receives a contribution from all permutations of the second term
in Eq. (3) and also from the third multiple-scattering terms. A typical such term, shown in Fig. 1(b),
contributes to the connected amplitude the quantity

d~ttt,
E"' (2 )'„' [1—y,' —(y, +x)'-x'] [1—y,"—(y, '+x)'-x'] '

where we have defined the loop momentum as E"'x, and we have suppressed the momentum and energy
dependence of the two-body t matrices. Qur assumptions about the two-body t matrix allow us to ob-
tain the divergent part of Eq. (4) as E-O by putting E=0 under the integral sign. We then obtain for
Eq. (4)

E"' „[1-y,' —x' —(y, + x)'] [1—y,"—x' —(y, '+ x)']

Note the integral will be singular if the rescattering condition is satisfied by the y's. The complete
contribution to B of Eq. (1) from the third-order multiple scatterings is seen to be

where I is a kinematical integral of the type given in Eq. (5).
The logarithmic term in Eq. (1) comes from the fourth-order multiple-scattering terms, a typical

one of which is shown in Fig. 1(c). It gives

(2m)'J [E k,' —q' (—k, +-q)'] [E q' q" -(q+-q')'—] [E q" —0,"-(k, '+—q')']

The logarithmic singularity is not apparent if we

scale the loop momenta by E' ', rather we see
that the integral in Eq. (6) is logarithmically di-
vergent at E = 0, and the divergence comes from
the lower limit of the q, q integration. To ob-
tain the lnE singularity and its coefficient, one

can split the qq' integrations into a part in which

q and q' are kept less than some finite cutoff,
and the rest which is finite as E-0. The cutoff
integral has a lnE singularity and can be written

a,a,a,a, lnEI(y, , y,. ') + O(1)

as E-O, where I is a kinematic expression in-
dependent of the particular cutoff. The total con-
tribution to C is obtained from summing over all
fourth-order contributions.

It is easily seen, essentially by dimensional

arguments, that all higher multiple-scattering
terms are finite as E-O. Further, by analyz-
ing the Faddeev equations, it can be shown that
the sum of these terms is finite at E=O even if
the multiple-scattering series does not converge,
so long as there is no three-body bound state at
E= 0. The unlikely existence of a three-body
bound state at E = 0 simply adds to A the residue
of the bound-state pole. The existence of three-
body forces in no way changes our results so
long as they are of finite range and nonsingular.

If the particles do not all have the same mass,

our results remain essentially unchanged. The
general form of Eq. (1) is maintained, but the
kinematical factors in A, B, C will change. This
is to be contrasted with the rescattering singu-
larities which depend strongly on the mass ratio. '

Finally we note that an analogous analysis of
the N-body connected elastic amplitude may be
carried out. In particular the leading divergence
as the total center-of-mass energy E vanishes
goes like E

We have carried out our analysis entirely in
the framework of nonrelativistic quantum me-
chanics, but insofar as any relativistic theory
possesses a reasonable nonrelativistic limit as
E-O, our results will apply to it.

The low-energy expansion of the three-body
elastic amplitude given here has a number of
applications. For example, we have used it to
understand the analytic properties of three-body
decay amplitudes where it leads to some rather
surprising threshold behavior. ' Its usefulness
as a low-energy approximation in statistical me-
chanics is under study.

*%ork supported in part by the U. S. Atomic Energy
Commission and the Nationa1 Science Foundation.

As usual we define O(g) a.s E tends to zero to mean
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is finite.
Cf. M. I.. Goldberger and K. M. Watson, Co/Eision

Theory (Wiley, New York, 1964), p. 286 ff; L. D.
Fsddeev, Mathematical Aspects of the Three-Body
I'xoMem in tI.""- ~.*."ntum SenIIenng Tkeoxy (E'daniel

Davely, New York, 1965), p. 16 ff.

Cf. M. H. Hubin B. Sugar, and G. Tiktopoulos,
Phys. Rev. 146, 1180 (1966).

M. H. Rubin, R. Sugar, and G. Tiktopoulos, Phys.
Hev. 169, 1488 (1967). In this paper the slightly exag-
gerated claim is made that the full amplitude is finite
at E =0, but in fact the proof is only given for the sum
of multiple-scattering terms above third order.

H. D. Amado, D. F. Freeman, and M. H. H,ubin,
to be published.
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SUM RUI.ES, STRUCTURE FACTORS, AND
PHONON DISPERSION IN LIQUID He' AT LONG
WAVELENGTHS AND LQW TEMPERATURES.
David Pines and Chia-Wei Woo [Phys. Rev. Lett.
24, 1044 (1970)].

A factor 2 is missing from Eqs. (12), (17), and
(19). Wherever $ appears in these equations it
should read 2(. Tlle1'e ls Ilo change III aIly of tile
results reported.

MAGNON- PAIR MQDES IN TWO DIMENSIQNS.
P. A. Fleury and H. J. Guggenheim [Phys. Rev.
Lett. 24, 1346 (1970)].

Qn the last line of p. 1347 the words "zeroth
moment" should be replaced by "first moment. "

, Reference 2 should read: "J.B. Parkinson, J.
Phys. C: Proc. Phys. Soe., London 2, 2012
(1969). The low-temperature magnon-pair line
shape in K,NiF~ was calculated and observed in-
dependently by S. R. Chinn [thesis, Massachu-
setts Institute of Technology, 1970, (unpublished)].

The results appear in S. R. Chlnn Ho J. Zelger
and J. R. O' Connor, to be published. "

MAGNETIC MQMENT QF A PARTICLE WITH
ARBITRARY SPIN. C. R. Hagen and W. J. Hur-
ley [Phys. Rev. Lett. 24, 1381 (1970)].

The following corrections should be noted:
In the definition of b, '"(v, R) the quantity so" v

should be preceded by a minus sign.
The expression for D which follows Eq. (2)

should read D =P(yP+m).
The Lagrangian immediately preceding Eq. (5)

has three incorrect indices. The corrections
are readily identified by taking the X =1 limit of
Eq. (8).

In the equation following Eq. (5) the first sub-
script on (a. Ilo II) should be a, .

In Eq. (6) replace j' by its negative and the
last superscript by r, '. Corresponding to this,
all signs in the equation which follows (7) are to
be taken positive.

In the final equation the first subscript on the
last y should be a, .

SPIN FLUCTUATIONS IN NEARLY ANTIFERROMAGNETIC METALS. Toru Moriya [Phys. Rev.
Lett. 24, 1433 (1970)].

The last equation on p. 1435 should read

X, (V.~, ) =(&/8")l~(E...-E,)l '(-.')QI "g (q ~E...)]e( -q ~~...)
+ [1+sgn(q. VE~) ]e(w —q. VE~)j.

The name of the author of Ref. 9 should read W. M. Lomer.
S. Doniach [J. Appl. Phys. 39, 483 (1968)j had previously discussed a similar problem by using a

special model due to Fedders and Martin. However, the corjecture stated there as to the divergence
of the coefficient of linear specific heat at the critical boundary does not seem to be warranted.


