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Although the shape of the angular distribution was
measured with 10.1-MeV tritons, the magnitude of the
cross section was measured with 12-MeV tritons. Es-
timates with oux' zero-range code indicate that the ef-
fect of this 2-MeV energy difference on the magnitude

of the cross section should be less than 7 Vo.
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%6 deterInine the dynaInlcs of a spherically symmetric, thin-shelled enseIQble of Qol-
lisionless particles. All the stable and unstable equilibrium configurations (which we
find to be stable against single-particle decay} are classified with the help of a variation-
al prioeiple. Applying this principle to zero-rest-mass particles (6.g. , gravitational
geon), we find that quantum geometrodynamics must be applied when the geon has low
angular Inomentum and is in its ground state.

The hydrodynamics of spherically symmetric
gravi. tational collapse' has advanced to the stage
whex'e, in order to gain new knowledge, one must
merely solve the appropriate equations for the
particular situation under study. Because of their
nonlinearity, some very interesting information
can be extracted from these equations only with
great financial efforts: Involved computer calcu-
lations are necessary to solve the equations. '

Consequently, our work has been to set up and
solve analytically an archetypical model for grav-
itational collapse'4: Although this model ignores
the detailed internal, hydrodynamic features, it
incoxporates those essential features that deter-
mine whether or not a black hole or a geon is
formed. Consider a spherically symmetric en-
semble of noncolliding particles (with or without
I'est 111Rss)~ each hav1ng R glvell angular InoIIlell-
tum 1. The stress-energy tensor and the particle
flux vector are'

T,"= fop„p "do1,

J'" = fop "d(u,

respectively. Here N is the invariant single-par-
ticle distribution function that satisfies the Liou-
ville equation, P" is the particle four-momentum,
and d~ is the invariant three-momentum volume
element.

We shall selectively focus on ensembles that
are hollow thin-shelled spheres. Within a shell
the particles ax e churning back and forth within a
small energy range. Consequently, an observer
moving with the thin shell notices that

T, =cpoJ,

da/dR = 4IIR'J' exp[ —,'(X + v)] (2)

dm/dR = 4&R'T '-
in the Schwarzschild coordinates,

d&' = -e "dt'+e ~dR'(d8'+ sin'8d9~').

Hex'e & and ~ are the pax'tlcle Dumber aDd the
mass enclosed by a sphere of radius R. The
radial metric coefficient is given by'

(4)

and the energy of the pax ticles is peaked around

cp e "/2 c(f2/R2+ p2c2)II2

where l is the conserved angular momentum and
p is the rest mass of each particle. For momen-
tarily static particle ensembles, having total
particle number &, the total mass energy as
seen by a distant observer is determined from
the di.fferential equation

dm* 2m* »2 &&

This equation is the CODsequeDce of dlvldlng Eq
(2) into Eq. (3) and then making the appropriate
Subetlt tiOBS fOr e''2, Too, md poe "/2. Integrat-

where e is the speed of light.
First we wish to determine the equilibrium con-

figurations of the particle ensemble. Consequent-
ly, we focus attention on all the momentarily
static configurations. The conservation of parti-
cle number and the initial-value equations of gen-
eral relativity yield
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ing Eq. (6) over m* from 0 to M ~ and & from 0
to & yields

)i/2
M c2=Acw —+ p2c2I

i

I a2c' t'I2, ,& G

2 R (R
(7)

for the total observed mass energy. It can also
be directly obtained from a quasi-Newtonian ar-
gument: Equation (7) is the sum of (a) the total

nent of P„ in Eq. (5), and (b) the Newtonian gravi-
tational energy due to A particles making up a
hollow sphere'.

1 (mass)'G
W ——+ p, 'c'

I

2 cA'

the kin
It is evident that not only the rest mas b t 1

e kinetic energy makes a decisive contribution
to the gravitational energy.

Figure I gives the total observed mass energy
of a material particle ensemble as f t' f
the radius for various angular momenta.

To select the equilibrium configurations one
must focus one's attention on those configura-
tions that extremize ~ with respect to configu-
rations which have the same total particle num-

ber A, but whose radii differ slightly. ' Fi.gure
I makes apparent not only which configurations
are in equilibrium but also which are stable and
which are unstable with respect to collective mo-
tion. A catalog of both the stable and unstable
configurations as characterized by the angular
momentum and the radius of the colle t'
semble is given in Fig. 2.

Are the equilibrium configurations stable with
respect to single-particle evaporation'P Yes l

A simple examination of the single-particle po-
tential in relation to the catalog of l b '

configurations shows that the single-particle po-
tential always has a minimum precisely at the
position of the shell-a minimum that is sharper
the thinner the shell is.

The dynamics of collapsing particle ensembles
we obtain directly by solving the Einstein field
equations in comoving coordinates'.

d8 =-e +dt +e A'

+R'(~, t)(d8'+ isn'Hd(p').

More simply, however, we write down particle
and mass conservation, Eqs. (I) and (2), in co-
moving coordinates:
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CCFIG. 1. Effective potential" for collective motion
of material parti. cles. The ordinate measures M„, Eq.
(7), the mass seen by a distant observe ' nits

Mp«p =Ape . The abscissa measures the radial co-
ordinate R of the thin shell in geometric mass unit
M*.
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The curves represent the locus of momentarily

static configurations for various angular momeuta
measured in units Inits Mp, p pc. In these units the curves,
Eq, (7), are y=(1+1.2/X2)~/ -2(i+I /X)/X Ob

that alt
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a a though there do exist stable and unstable equilib-
rium configurations for sufficientl hi h a

e ow E«, ,q'M&, op~pc =1.954 there exists no
equilibrium configuration whatsoever.
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pj.o. 2. Catalog of the COBective e ilibr
igurations. The ordinate measures the angular mo-

mentum of each pRrtlcle ln R conf lgurRtlon ln units
Mp«p*p, c =Agcy, c. The abscissa measures the radius
in units of Schwarzschild radii (R
conf lco lguration. Thus, the lower unbroken curve de-
picts both the unstable and the stable collecbve equi-
i rium configurations. It is to be noted th t b 1R cow.954M&«&*pc, where B =2.1323(2M~*), there

exi8ts no equilibrium coHflgurRtlon Also note that Rs
E ~, the unstable branch approaches the dimension of
a geon, tt = (9/8) (2M *).
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dm/d~ = -4&R'T, '8R/~r.

Then transform the metric from the Schwarz-
schild coordinates, Eq. (4), to comoving coordi-
nates, Eq. (8), and introduce the rate of change
of R with respect to proper comoving time, U

e —"&R/Bt, and thus obtain

1-2M*/R
(1+(I'-2M*/R) '" '

e ~/'&R/&r = (1+U'-2m*/R)'/2.

In the comoving frame the mean energy of the
particles ls

cP-,e ~/' = c(l'/R'+ y, 'c') '/',

Eq. (3), on the other hand, does not change its
form. With these observations we again obtain
a differential equation similar to Eq. (6),

which after integration yieMs

~h
M„c'=A(1+U'}'+c —+ p'c'

R

merely constitutes a temporary transition-state
complex of a collislonless par tlcle ensemble im-
ploding towax'ds a black hole.

For massless particles, such as photons (or
"gravitons"}, Eq. (7) gives directly the geometri-
cal-optics limits of the mass energy of electro-
magnetic" waves (or gravitational" waves) held
together by their own gravitational field. Why do
such geons give rise to a direct encounter with
quantum geometrodynamics'P I et us consider
the dimensions of a geon with the smallest possi-
ble angular momentum. Rewrite Eq. (7), with p,

=0, in dimensionless form; letting the angular
momentum assume its quantum values,

P =f,(l. + 1)a',

and letting

n =A' '[I (I + 1)j' ~

the mean "excitation number, " i.e., the geomet-
rical mean of the number of photon quanta and
the number of angular momentum quanta, we
have

nRpw 1InRpw
I

)s
(11)

nMpw R 2( R j
(see Fig. 3). Here M p~ = (Sc/6)'/' and R pw ——(SG/

--c —.+p c
2 R R c

I I I I I III] I I I I I III

Here again a quasi-Newtonian interpretation is
possible. Wher eas expression (5') constitutes
the fourth physical component of P& as seen by a
comoving observer, the first term in the expres-
sion for ~ is that same component as seen by
a freely faBing observer at constant radius. The
second term of M is again the gravitational en-
ergr of the hollow sphere. Here only the rest
mass and the angular energy, but none of the
radial motion, contribute to the source of the
gravitational energy (see also Kuchar4).

The total mass energy is the energy integral
for the radial motion of the whole collecti. ve en-
semble.

It is evident from Eq. (7') that (a) Fig. 1 de-
picts the locus of turning points of the radial
motion for ensembles characterized by vaxious
angular momenta, and that (b) for sufficiently
high mass energy M, or low enough angular mo-
mentum E, a black hole, i.e., a completely col-
lapsed configuration, is formed. Furthex more,
an appropriate combination of mass enexgy and
angulax momentum will result in an unstable con-
figuration, a "particle geon, "balanced at the
verge of collapse. In general, however, a geon
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FIG. 3. Effective potential for collective motion of
an electromagnetic (zero rest mass) geon. Vertical
axis is the mass in units nM~. Horizontal axis is the
radius in units nRpw. In these units Eq. (Il) reads
y =I/X-2/2L'3. It is evident therefore that the only
equilibrium configuration (which is unstable) has a
radius 8 = (9/8) (Schwarz schild radius), independent of
the photon and the angular momentum number. lt is
the limiting configuration of the unstable branch in
Fig 2
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c')' ' are the Planck-Wheeler mass and length,
respectively. It is evident that the total mass
and the size of a geon depend on its mean excita-
tion number, Eq. (10). In the limit of zero rest
mass, a wave field characterized by a single
quantum of angular momentum, 1-=1, and a sin-
gle photon (or graviton), A =1, the size of the
geon is

nR p~ ——2 Rp~ ——2' ~1.616&10 "cm.

This is precisely the dimension at which the fluc-
tuations in the geometry" become appreciable,
i.e., where classical theory becomes inapplica-
ble, and quantum geometrodynamics must enter.
Here one should mention parenthetically that the
spherical approximation will also become inap-
plicable because single-photon or -graviton
fields are not spherically symmetric.
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Measurements of the ratio of the deuteron to proton electric form factors, G~(d)/Ga(p),
were made from elastic electron-deuteron scattering to a precision of approximately
1 /() for the range of momentum transfers 0.10 —q —0.8 F . Within experimental
errors the slope as obtained from tim ratio Ga{n)/Gs{ p) agrees with the extrapolated
thermal neutron-electron interaction slope when relativistic corrections and Feshbach-
Lomon deuteron wave functions are applied. The deuteron radius was found to be
1.95+ 0.02 F, the same as predicted by the Feshbach-Lomon calculation.

We have measured the ratio of elastic electron-
deuteron scattering to elastic electron-proton
scattering in the range of momentum transfers
0.1 &q' ~0.8 F ' with a precision of 1 /g or better.
It is possible to extract from such measurements

values for the ratio Ga(n)/Gs(p). ' We report this
ratio and apply the best known fits of Gs(p) to ex-
tract a value of Gs(n).

There has been a discrepancy between the
slope of the neutron-electron interaction mea-

1774


