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Distorted-wave Born-approximation calculations have been done for the reactions
4&48Ca(t, p)4~'MCa, . A finite-range interaction was used, which acted between the pro-
ton and each transferred neutron. The results support conclusions of zero-range (t,p)
calculations, both with respect to the shapes of the angular distributions, and the rela-
tive cross sections for stripping into different shells. However, the calculated absolute
cross section is about one third of that observed.

Most distorted-wave Born-approximation
(DWBA) analyses of two-nucleon transfer data
are based upon the assumption that the transfer
process only occurs when the centers of mass of
the incoming and outgoing projectiles coincide. ' '
For example, the (t, p) reaction is treated as if
it were due to a zero-range interaction between
the proton and the mass center of the transferred
neutrons. If, in addition, we neglect spin-flip
processes, the differential cross section of a
(t,p) reaction with angular momentum transfer
I. will have the form

—'=i s. s
dy'

'
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in which the S„ l jz 2 l2 j2 are spectroscopic am-
plitudes, and the functions F„.. . ,. (9) are
approximately proportional to each other,

The coefficients C„, . „, . measure the ex-
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tent to which the neutrons in the two-neutron
state (n,l,j„n,l,j» L) have relative motion simi-

lar to the relative motion of the neutrons in the
triton. Table I gives the coefficients C„„
calculated in this way for the "Ca(t,p)"Ca ground-
state transition, with 10.1-MeV incident tritons.
Equations (1) and (2) imply that the relative
strengths of transitions with a given I- value are
determined by the quantities
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The assumption of a zero-range interaction be-
tween the proton and dineutron mass center is
made to simplify the numerical calculations. It
has not received any physical justification. The
problem is complicated by the fact that many
of the physically important lengths in the prob-
lem have comparable magnitudes (e.g. , projec-
tile wavelengths, force range, triton radius,
nuclear radius, etc. ). Moreover, it is difficult
to estimate the normalization of the zero-range
interaction, and thus calculations of the absolute
cross section are of questionable reliability.

For these reasons, a DWBA calculation for
the (t, P) reaction has been performed, in which
the interaction has finite range and acts between

Table I. The spectroscopic amplitudes S„»„„.0 for the 40Ca(t, p)42Ca ground
state transition calculated by Bayman and Hintz, Ref. 3, using a pairing force
strength of 20/A MeV; the reaction amplitudes C„» „»0 calculated using the

0Izero-range code TWOPAR; and the C„lj „lj determined &rom the square roots
s

0 0'of the factors given in Fig. 2. Both the C„» „» and C„&j nlj are normalized to
unity for (2P 3/2) transfer.
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the proton and each transferred neutron:

V= V(n„p) + V(n„p),

V(n, p) = —[a +ho„op] W(In —pI),

(4a.)

(4b)

"'c. (., &)
"'c..„

E, = IO. I Mev

Q =
I I. 35 Mev

(4c)

We have taken a = 481.21 MeV, b = 68.05 MeV,
r, =0.45 fm, K=2.5 fm '. This interaction is
similar to that used by Tang and Herndon' in
their variational calculation of the triton wave
function (we have used the same range parameter
for the singlet and tripIet parts of the force,
whereas they use a singlet range of 2.211 fm '
and a triplet range of 2.735 fm '). Our (t, P) cal-
culation also uses the triton wave function cal-
culated by Tang and Herndon. The neutron bound
states are calculated in a Woods-Saxon well,
whose depth is varied to yield an energy eigen-
value equal to half the two-neutron separation
energy. The calculation was restricted to cases
with total angular-momentum transfer zero. It
involved numerical evaluation of six-dimension-
al integrals.

The solid line in Fig. 1 shows a semilog plot of
the angular distribution calculated in this way
for (2P„,)' transfer onto "Ca, leading to the
ground state of Ca4'. The dashed line is the angu-
lar distribution for the same transition, but cal-
culated with the zero-range code T%OPAB, which
utilizes a modification of the one-particle trans-
fer DWBA code written by%. R. Smith, and
a form factor calculated by the method of Bay-
man and Kallio. ' The results of this zero-range
calculation are arbitrary to the extent of an
overall multiplicative factor. This factor is
chosen in Fig. 1 to produce closest correspon-
dence between the dashed and solid curves. It is
seen from Fig. 1 that the angular distribution
calculated from the finite-range expressions has
very nearly the same shape as that given by the
simpler zero-range code. This similarity was
observed in all the calculations performed, for
both "Ca(t,p) and "Ca(t, P).

Figure 2 shows semilog plots of the angular
distributions for transfer of zero-coupled (2p», )',
(lf 7,2), (ld»2)', or (2s„,) neutrons onto 4OCa,

calculated from the finite-range expressions.
The scale on the ordinate refers to the solid
curve, corresponding to (2P»2) transfer. The
other curves are scaled by the factors shown in
Fig. 2, so as to make the curves coincide in the
forward direction. It is seen that the shapes of
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FIG. 1. The solid line shows the angular distribution

determined by the calculations reported in this Letter.
A pair of zero-coupled @~tq neutrons is transferred,
witll 82+ 3!2,2+3/2 I. The optical parameters are the
same as those used in Ref. 3. The scale on the ordi-
nate refers to this solid line. The dashed line was cal-
culated with the zero-range code T woPAR . The circles
are the data points of Bjerregaard et gl., Ref. 7, mul-
tiplied by 0.65 (see Ref. 8).

these four angular distributions are quite similar.
This similarity is increased if we compare only
the (2p„,)' and (lf», )' curves, or the (ldaq, )' and
(2s„,)' curves. This is expected, because we
are then comparing cases in which the neutrons
are transferred into the same major shell.
Moreover, study of the real and imaginary parts
of the reaction amplitudes reveals that these also
have angular distributions approximately indepen-
dent of the shell into which the two neutrons are
transferred. Thus the relative cross sections
can still be estimated with an expression like
(3), the coefficients C„,, „,z' in (3) being replaced
by coefficients C„„-„» given by the square
roots of the factors that relate the cross-section
curves in Fig. 2. These C„„.„,, ' are also listed
in Table I. Comparison of the second and third
columns in Table I shows that the zero-range
code gives a very good representation of the
relative strengths of the (2P», )', (lf», )', (ld„,)',
and (2s„,)' transitions.

The sensitivity of the calculated angular dis-
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tributions to changes in the opt1cal parameters
can be seen by comparing the solid curves in
Figs. 1 and 2. These two calculations differ only
in their proton optical parameters. It should be
noted, however, that although these curves differ
in shape, their absolute magnitudes near the
diffraction maxima are quite similar. Analogous
changes in shape, with approximate preservation
of absolute magnitude, were observed when the
triton optical parameters were varied.

The first co1umn of Teble I shows spectro-
scopic amplitudes for the «'Ca(t, P)» Ca ground-
state transition, calculated by Bayman and Hintzs

from a model in which the neutrons in "Ca and
Ca interact via a pairing force of strength G

=20jA MeV. The quantity (3) then has the value
0.54 which implies that the solid 11ne 1n Flg. 1
should be scaled down by a factor of 0.54 in order
to agree with the experimental data. However,
to produce the measure, of agreement between
calculation and data shown in Fig. 1, it was ne-
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FIG. 2. Comparison of calculated angular distribu-
tions for stripping zero-coupled (2p&g2), gf Yg2),
(1dqy2), and (2sqg2)2 neutrons. The sar, .e triton optical
parameters were used as for Fig. 1, but the proton
parameters were taken from Becchetti and Greenlees,
Ref. 10. The scale on the ordinate refers to (2Pg2)
transfer (solid curve). Also listed are the factors by
which the other curves had to be multiplied to achieve
agreement in the forward direction.

cessary to scale the data down by a factor of
0.65.' Thus our calculation underestimates the
obser ved differ ential cross section by a factor of
0.54 x 0.65 = 0.35. The shape of the observed
angular distribution is reproduced fairly well by
the calculation. A similar estimate for the
"Ca(t,P) Ca ground-state transition shows that
our calculated angular distribution is too small
by a factor of 0.32.

Gur finite-range calculation thus supports the
use of zero-range codes for L=O two-neutron
transfers. We concur with their angular distri-
butions, and with their relative cross sections
for transferring particles into different shells.
However, we have shown that the DWBA treat-
ment, combined with nuclear wave functions
containing a reasonable amount of configuration
mixing, leads to absolute cross sections that. are
only about a third of those experimentally ob-
served. This might indicate that the actual trans-
fer mechanism is more complicated than the
direct process we assumed, or that there is
appreciably more configuration mixing than could
arise from a pairing force of reasonable strength.
A stronger pairing force (G= 27/A MeV), which
overpredicts the odd-even mass difference by
about 50%, leads to calculated (t,P) cross sec-
tions that are still only about half as large as
those observed. It shou1d be borne in mind that
these pairing-force calculations include only the
six single-particle states near the Fermi sur-
face. Part of the missing (I,P) cross section
might be due to the combined effect of many
small components in the nuclear wave functions
coming from distant configurations.

The author wishes to thank R. A. Broglia for
his valuable help throughout the course of this
work.
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%6 deterInine the dynaInlcs of a spherically symmetric, thin-shelled enseIQble of Qol-
lisionless particles. All the stable and unstable equilibrium configurations (which we
find to be stable against single-particle decay} are classified with the help of a variation-
al prioeiple. Applying this principle to zero-rest-mass particles (6.g. , gravitational
geon), we find that quantum geometrodynamics must be applied when the geon has low
angular Inomentum and is in its ground state.

The hydrodynamics of spherically symmetric
gravi. tational collapse' has advanced to the stage
whex'e, in order to gain new knowledge, one must
merely solve the appropriate equations for the
particular situation under study. Because of their
nonlinearity, some very interesting information
can be extracted from these equations only with
great financial efforts: Involved computer calcu-
lations are necessary to solve the equations. '

Consequently, our work has been to set up and
solve analytically an archetypical model for grav-
itational collapse'4: Although this model ignores
the detailed internal, hydrodynamic features, it
incoxporates those essential features that deter-
mine whether or not a black hole or a geon is
formed. Consider a spherically symmetric en-
semble of noncolliding particles (with or without
I'est 111Rss)~ each hav1ng R glvell angular InoIIlell-
tum 1. The stress-energy tensor and the particle
flux vector are'

T,"= fop„p "do1,

J'" = fop "d(u,

respectively. Here N is the invariant single-par-
ticle distribution function that satisfies the Liou-
ville equation, P" is the particle four-momentum,
and d~ is the invariant three-momentum volume
element.

We shall selectively focus on ensembles that
are hollow thin-shelled spheres. Within a shell
the particles ax e churning back and forth within a
small energy range. Consequently, an observer
moving with the thin shell notices that

T, =cpoJ,

da/dR = 4IIR'J' exp[ —,'(X + v)] (2)

dm/dR = 4&R'T '-
in the Schwarzschild coordinates,

d&' = -e "dt'+e ~dR'(d8'+ sin'8d9~').

Hex'e & and ~ are the pax'tlcle Dumber aDd the
mass enclosed by a sphere of radius R. The
radial metric coefficient is given by'

(4)

and the energy of the pax ticles is peaked around

cp e "/2 c(f2/R2+ p2c2)II2

where l is the conserved angular momentum and
p is the rest mass of each particle. For momen-
tarily static particle ensembles, having total
particle number &, the total mass energy as
seen by a distant observer is determined from
the di.fferential equation

dm* 2m* »2 &&

This equation is the CODsequeDce of dlvldlng Eq
(2) into Eq. (3) and then making the appropriate
Subetlt tiOBS fOr e''2, Too, md poe "/2. Integrat-

where e is the speed of light.
First we wish to determine the equilibrium con-

figurations of the particle ensemble. Consequent-
ly, we focus attention on all the momentarily
static configurations. The conservation of parti-
cle number and the initial-value equations of gen-
eral relativity yield


