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and Ref. 1 for potassium metal. The effect of K ioniza-
tion on our results will not be considered here.
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Order-Disorder Phase Transition in Binary Alloys-Coherent Potential Approximation*
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(Received 10 August 1970)

The electronic density of states of a one-dimensional AB model alloy with long-range
order is calculated in the coherent potential approximation. Impurity states are found
inside the energy gap and the energy gap disappears long before the alloy becomes com-
pletely disordered. The temperature-dependent long-range order exhibits a first-order
order-disorder phase transition which causes a discontinuity in the electronic density
of states at the middle of the energy gap at the critical temperature T, .

Disordered systems and, more specially, dis-
ordered alloys constitute a central problem in
modern statistical physics. While the electronic
density of states (EDS)! "7 and the atomic correla-
tion function (ACF)®® of alloys have been inten-
sively studied in recent years by many authors,
their relationship has received relatively little
attention. The EDS has been calculated only
where the ACF vanishes (completely disordered
alloys).! ® Attempts to include a finite pair
correlation have been so far unsatisfactory.” It
is known, however, that the interatomic potential
which determines the ACF depends on the over-
lap of electron distributions from the various
sites and the EDS also depends on its environ-
ment (ACF). Since the ACF and the EDS are
correlated, they should be determined in a self-
consistent manner. In this paper, we use the
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powerful coherent potential approximation (CPA)
of Soven! to calculate the EDS from a known
ACF. Then the value of the ACF is so adjusted
that the free energy of the alloys is a minimum,
and the EDS and ACF are determined as func-
tions of temperature 7. For an alloy with a half-
filled band, the EDS at the Fermi surface in-
creases with 7 and has a discontinuity at a criti-
cal temperature 7,.

Soven’s single-site CPA is modified for a par-
tially ordered alloy with long-range order (LRO)
n. The CPA is developed in the framework of
multiple-scattering theory introduced by Lax.°
In this approximation, the electron is regarded
as propagating in an effective medium. The ef-
fective Hamiltonian retains the full crystal sym-
metry and has a coherent potential (CP) at each
site. Here the CP is a complex quantity describ-
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ing the average effect of the medium. The cri-
terion to determine the CP is to require that a
single scatterer embedded in this effective me-
dium produce no further scattering on the aver-
age.

For a long-range ordered alloy consisting of
two sublattices 1 and 2, the criteria are

{,)=0 and {t,) =0, (1)
which can be rewritten as!

€ =§=(e, =€ )(6,—€5)G,, (€, &), (2)

& -(6—€,)(6=€5)Gyy(€,, ), (2a)
where

€ =Ci4€4+Cipep 171, 2,
Here we assume that the atoms are randomly
distributed within each sublattice. The quantity
€, describes the CP of the ith sublattice, and €,
and €z are the actual atomic potentials of A and
B atoms, respectively. Their concentrations
within the 7¢th sublattice are denoted by C,, and
C;p and are functions of the LRO 7. For an AB-

type binary alloy of equal concentration, we
have'!

C,4=C,5=0.5(1+n),
and
C,4=C,5=0.5(1-7). (3)

The G;; is the CP Green’s function of the ith sub-
lattice, The €;’s can be determined by solving
the coupled Eqgs. (2) and (2a). The electronic
density of states is given by

p(E) ==(1/2m) Im(G,, +G,,). (4)

In order to illustrate the modified CPA, we
consider a simple one-dimensional nearest-
neighbor interaction Hamiltonian for an AB-type
binary alloy (50-50) which consists of two sub-
lattices with the LRO parameter 7:

H=), ¢, |n)n|+(r/2) |n){m], (5)

n n,m=nt1

where |n) represents a Wannier atomic orbital
at site n with energy €, which may be €, and €4
and % is the hopping integral (assumed to be
composition independent). In the modified CPA
we have to define two CP’s ¢, and ¢, for two sub-
lattices. The corresponding Green’s functions
are

G, =(E-¢g)a™,
G, =(E-€,)A™,

where
A={{(E-e)(E-c)-h?/2]2-ht/4}"2. (6)

The CP’s ¢, and ¢, are determined by solving
Egs./(2) and (6), and the electronic density of
states p(n) can be obtained via Eq. (4). For con-
venience, we choose the zero of energy to be at
3(e,+€p), set eg—€,=0, and describe energies
in units of the hopping integral %; then obviously

€,=-0/2 and €5,=6/2. (7)

The electronic density of states is a symmetri-
cal function of the electronic energy E with re-
spect to E =0. Therefore, we need only to dis-
cuss the EDS in the region E <0. For n=1, all
A atoms are in sublattice 1 and all B atoms are
in sublattice 2. From Eq. (6) one can show that
there is an energy gap of width 6 centered at E
=0. The EDS is extended from —(6/2 +k) to —6/2
and from 6/2 to 6/2 +h.

In order to facilitate numerical computation,
we have added a small imaginary part y in the
energy E. Because of finite y a tail in the EDS
which appears at the band edges should be ig-
nored. The numerically calculated p(E) for 7
ranging from 1 to 0 are shown in Fig. 1. In the
CPA the energy gap disappears at 7<0.6, long
before the alloy attains complete disorder. At
the onset of disordering, new states appear in-
side the gap and gradually fill up the gap, in con-
trast to the narrowing of the energy gap occur-
ring in the conventional virtual crystal approxi-
mation.!?

n P(E)

FIG. 1. The electronic densities of states of an AB
alloy (50-50) calculated in the CPA are plotted for
several LRO 7. Since the EDS is symmetric with re-
spect to E =0, we plot only the lower half of the EDS.
Here 6=0.6 and v=0.02.
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FIG. 2. The LRO 7 are plotted as functions of tem~
perature T for the cases of 6=0.3 (line @), 6=0.4 (line
b), 6=0.5 (line ¢), and 6=0.6 (line d).

As we have stated earlier, the ACF and the
EDS are correlated and they should be mutually
adjusted so that the configuration is most stable,
or in other words, the total free energy A(7) is
a minimum. In the present case, the free energy
is a sum of two contributions. One is the total
electronic energy which is

E(n) = [2FEp(E)dE. (9)

Here E which is the Fermi energy is equal to
zero for alloys with one electron per site. The
second contribution is due to the lattice entropy
which is®

S(n) =2(1+n) In[(1 +n)/2]

-z(1-n) In[(1-n)/2]. (10)

The free energy is then

A(n) =E (n) + TS(n). (11)

This system is unstable unless 7 is so chosen
such that

8A(n)/8m=0,
and
82A(n)/8n? > 0. (12)

From conditions (12), one can determine numer-
ically the LRO 7 as a function of temperature 7,
which is shown in Fig. 2. One observes a first-
order order-disorder phase transition at the
critical temperature 7,., Temperature T, in-
creases with 0.

Since p(E ;) depends on 7 and 7 depends on 7,
therefore p(E ) is a function of 7, which is
shown in Fig. 3. One notices that there is dis-
continuity in p(E ;) at the critical temperature
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FIG. 3. The density of states at the Fermi surface is
plotted as a function of 6/KT for the cases 6=0.6 (line
a) and 6=0.3 (line ).

T,.'® For T<T,, the p(E) increases with tem-
perature and for 7> T,, the p(E) remains es-
sentially constant.

For 6>1, i.e., when the separation between
the two atomic energy levels €, and € is larger
than the hopping integral, the energy gap persists
even in the completely disordered phase (1=0).
Thus p(E ) vanishes for all values of 7. For
6 =0, the order and disorder phases are ill de-
fined. Therefore our numerical calculations are
limited to the region 0<6 <1, in which the dis-
continuity in p(Ey) is expected to exist. We
found that, for 0.3 <6<0.6, the ratio 6/k7, in-
creases as 0 decreases and the first-order tran-
sition character is also enhanced. This phenom-
enon is expected to persist when the concentra-
tion deviates from 50-50.

The results of our method as applied to the one-
dimensional alloy model are sufficiently promis-
ing to suggest the extension to three-dimensional
alloys (for example, simple cubic) and the inves-
tigation of the localizability of states in the ener-
gy gap region. In this case, the existence of a
mobility gap near E =0 will imply a nonmetal-
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to-metal transition.}* It will be appropriate to
extend Anderson’s localization theory®® to include
the LRO.

One of us (E-NF) would like to thank Professor
J. J. Hopfield for his comments and suggestions
concerning the critical phenomena. He is also
indebted to Professor P. Soven, Professor M.
Green, Professor L. Muldawer, Dr. G. B. Tag-
gart, and Mr, M, Ausloos for their interest in
this work and for discussions,
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Prior small-polaron hopping theories have tacitly assumed that the lattice relaxes
rapidly enough after a jump to permit the treating of successive hops as independent.
We conclude that the appropriate relaxation time is too long to permit consistent appli-
cation of these theories to intermediate-mobility materials such as NiO and CoO. Fur-
thermore, the activation energies associated with correlated hopping motion may be suf-
ficiently small so that the mobility will not manifest an activated behavior.

As has been stressed in a number of review
articles on polarons,’”3 the electron-lattice in-
teraction may be sufficiently strong in those po-
lar materials which are characterized by rather
low electronic mobilities to suggest that the car-
riers are to be viewed as small polarons. In
particular, much effort (recently reviewed by
Bosman and van Daal®) has been expended in or-
der to ascertain whether the carrier drift mobil-
ity in a number of transition-metal oxides mani-
fests the thermally activated temperature depen-
dence predicted by both the adiabatic® and non-
adiabatic” small-polaron hopping theories. In
this Letter it is pointed out that these theories
are only applicable to situations in which the
mean time between small-polaron hops is sub-
stantially greater than the time characterizing

the relaxation of the lattice following a small-
polaron hop* the present considerations indicate
that the deduced values of the drift mobility® in
NiO and CoO (~107!-1 cm?/V sec) correspond to
sufficiently short hopping times so that compari-
son with the hopping theories of Refs, 6 and 7 is
not appropriate. Furthermore, it is felt that for
such “intermediate” mobilities a theory of small-
polaron hopping is needed in which the probabil-
ity of a hop depends on the prior experience of
the carrier. Such a theory may find application
to a number of intermediate mobility materials.
In addition, in this Letter it will be argued that
in this intermediate regime, where successive
small-polaron hops are correlated, the activa-
tion energy characterizing the drift mobility is
reduced substantially from that of the uncorre-
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