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The total cross section for meson-meson scattering at high energy is calculated using
a simple, but plausible, SU(n)-symmetric multiperipheral model. The resulting or is of
the order 16m /NMv, where Mv is the central mass of the dominant low-energy reso-
nance multiplet in elastic meson-meson scattering and N is the dimensionality of the
multiplet of the incident mesons. The nongeometric character of this result is discussed.

The magnitude of high-energy hadron-hadron
total cross sections is generally considered an
elementary geometrical phenomenon. A typical
expectation is mR2 with R on the order of a pion
Compton wavelength. The purpose of this note is
to suggest that such reasoning may be misleading
and that the magnitude of high-energy hadron to-
tal cross sections constitutes an important test
for theoretical models. To illustrate this point
we show that a simple, but plausible, SU(n)-sym-
metric multiperipheral model for meson-meson
scattering leads to a total cross section of the
order

(16m'/W)(l/M „'),
where M& is the central mass of the dominant
low-energy resonance multiplet in elastic meson-
meson scattering and N is the dimensionality of
the pseudoscalar meson multiplet. With @=8 and

M& ——900 MeV, this number is an acceptable 30
mb, but there appears no reasonable manner in
which to interpret the total cross section given
by formula, (1) as a geometrical nR', since the
pion (or pseudoscalar) mass does not enter. The
important resonance mass is so large that with-
out the surprising 16m~ to compensate, total
cross sections interpreted on a geometrical basis
with a radius M&

' mould be only about 1.5 mb.
Finally, there is the important and unequivocally
nongeometric factor of 1/N.

Our reasoning starts with the multiperipheral
model of Amati, Fubini, and Stanghellini and
Bertocchi, Fubini, and Tanin' and the assump-
tion that the input of elastic meson-meson scat-
tering is primarily given by the on-shell transi-
tion via a single sharp resonance. With SU(n)
symmetry the crossing matrix guarantees that
the leading output Regge pole will be a singlet in
the t channel when the resonance multiplet struc-
ture is not pure singlet. Physically one would
have some appropriate admixture of SU(3) 8's
and 1's. The diagonalized t-channel singlet ab-
sorptive part equation for zero momentum trans-

fer takes the form'

A„(t,t') =K~(t, t')+ 1

with

„K~(t,t")A~(t", t')
(M '-t")' (2)

K„(t,t') =C, exp[-(X+I)rt(V„', t, t')] (3)

A ~(t, t ') =K~(t, t')/1- TrK),

with
1 ' K„(t,t)

16m'(X+ I) „(I2-t)2' (8)

cosh')(s, t, t ') = (s-t -t ')/2[(-t )(-t ')]'~',

X is the usual continuous label for the SO(1, 3)
representation, M~ the pseudoscalar meson
mass, and M& the resonance mass. The coeffi-
cient C&~ measures the resonance elastic width.
Since we are dealing with the diagonalized for-
ward equation, any effects of spin carried by the
resonance in approximating the input elastic
cross section are absent. The amplitude A~(t, t')
arises from the usual s-dependent forward ab-
sorptive part, A(s, t, t'), by the Laplace transform

A~(t, t') =j,ds exp[-(X+1)q(s, t, t')]~ 2

x A(s, t, t '). (5).
When the leading t-channel singlet pole dominates
the amplitude, the total P-P cross section is re-
covered by

'A(s, M~', M~') 1

[s(s-4M ')]' ' N (6)

The factor N is the crossing matrix element
connecting the t-channel singlet to any individual
s-channel state. This result, of course, is mod-
el independent.

In the neighborhood of the leading singularity
of Az(t, t') in the A, plane, the partial-wave ampli-
tude is well represented by the approximate'
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Since M~'«M&' it is adequate for A.
~

~ to evalu-
ate the trace indicated in Eq. (8) by setting M~ =0.
This leads to

ni, and Tonin, '

These approximations are further discussed be-
low.

From the Laplace inversion formula me recov-
er the full on-shell absorptive part, which for
large 8 behaves as

=(1/o. +1/n+1+1/n+2) '

=6/ll, if n=1.

Since each resonance decays into two pseudosca-
lar mesons, the model predicts

dip/d lns 12/1 1, (16)

where o. is the largest value of A. for which TrK&
=1, and

—1 2

S(o.) ex X(X+1)(x+2) „
The total cross section for any meson-meson col-
lision in the s channel is, from Eq. (6),

(12)

The value of a depends on the value of the cou-
pling constant C~~, but if we choose C&~ so that
n =j., we have finally

(13)

where J(l) =18/11. As noted by Tow, ' C~~ must

be quite large to make 0 = l. Our C&~ represents
a weighted sum over the contributions from sev-
eral resonances in each channel and from the
many channels involved in the SU(n) symmetric
problem. Thus the contribution from any individ-

URl +I coupling Qeed Qot be UIlRcceptRbly lR1 ge
Oux' confidence in the accuracy of the approxi-

mate partial amplitude given in Eq. (7) is based
on its x'elationship to rigorous separable upper
and lower bounds on the exact kernel, Eq. (3).'
These separable boundlQg kel nels ax'e trivially
soluble and lead to total cross sections like Eq.
(13) with J(l) lying somewhere between 18/ll and

2. Fuxther, the finiteness of M~ may be readily
taken into account to lowest order, the largest
correction term being of the form (Mz/M ~)'
x ln (Mz/M„). The net effect is to increase J'(1)

by 30%.
Giving support to the physlcRl plausibility of

the model is its prediction for the rate of in=

crease with energy of the average multiplicity of
produced resonances. Using the formula of Ama-

ti, Fubini, Rnd Stanghellini and Bertocchi, Fubi-

an entirely acceptable rate of multiplicity in-
crease from the point of view of experiment. '

It is evidently possible to refine this type of
model to take into account sevex'al resonance con-
tributions to the kex'nel and to consldex' bl eak1Qg
the SU(n) symmetry. Furthermore the questions
of self-consistency raised by incorporating the
effects of the relatively small high-energy por-
tions of the kernel must be addressed.

At the moment, however, we wish only to em-
phasize the striking qualitative features of the
resulting total cross-section formula, Eq. (13).
First, the very existence of such a simple formu-
la is a pleasant surprise, much of the multipe-
ripheralist community supposing the observed
magnitudes of hadron total cross sections to be
1QCRlcUlRble ~ even qualltatlvely ) by 81mple mod-
els. Next, the nongeometric nature of the result
is most unexpected. Geometrically inclined phys-
icists mould have been faced with a»"'- as
M~-0. Our result, at the least, presents a chal-
lenge to geometers building optical models. Fi-
nally, perhaps the most intriguing implication of
oux' 1 esult 18 thRt hRdx'on totRl cx'oss SectloQs Rx'e

"small" because there exists not just one but

many different low-mass mesons.
%e wish to acknowledge private communicR-

tions from D. Tow, D. R. Snider, and S. S. Shei
that helped to direct our attention to the model
discussed he1 e.
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This point will be discussed in a forthcoming paper
by the present authors.

~L. W. Jones et al. , Phys. Bev. Lett. 26, 1679 (1970).
These authors give dn~ jdlns =0.7+ 0.1, where n, is the
averaged multiplicity of charged particles produced.
Assuming most particles to be pions, one should mul-
tiply n, by a factor I to achieve n& . With exact SU(3)
symmetry the factor would be 2.

ERRATA

ION-WAVE INSTABILITIES AND ANOMALOUS RESISTIVIT~. g. R Kan
[Phys. Rev. Lett. 25, 348 (1970)].

We have found a mistake in our numerical computations. Therefore
Fig. I of the paper is in error and should be replaced by the accompany-
ing figure. The expressions given in the paper are correct as they
stand. The corrected figure shows that the results are P dependent and
that the critical streaming velocity for ion-wave instabibties is signifi-
cantly reduced only for P & 0.01. In particular, for P = 0.1 and T, - T;,
the critical streaming velocity is reduced from the electron thermal
speed (Fried and Gould's ion-acoustic mode) to approxiinateiy twice the
ion thermal speed. The theory is likely to find applications in high-P,
rather than in Iow-P, plasmas. Our previous discussion concerning
anomalous resistivity is thus also erroneous.

TB/ T.

FIG. 1 (revised). Critical streaming velocity in units of the electron thermal
speed for ion-wave instabilities vs the electron-ion temperature ratio. 8 On de-
grees) is the angle between k = (0,0„,It, ) and the dc magnetic field 50= (0, 0,80);
8~ is a value of 8 at which the critical streaming velocity is reached; P is the
ratio of kinetic pressure to magnetic pressure. In this figure we used ~/0; =10


