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A simple mechanical model has been found which gives the same angular velocity de-
pendence of energy and angular momentum as postulated in the variable moment of
inertia description of rotational states. The possibility for one of the two coefficients
of this description to adopt negative values follows naturally from this model. Also the
nonzero ground-state energies, which in some cases result from the variable moment
of inertia description, are easily understood.

One explanation which has been advanced for
the departure from the J(J +1) energy formula
for rotational states is the classical, rotation-
dependent, elastic deformation (P stretching). '
Much greater success has recently been obtained
using the formulas

E = —,'aP(s, +3C&u'), (1)

5[J(J+1)I
'~' = (u(S, + 2C(o') = (ud (2)

where u is the angular frequency, 4 is the mo-
ment of inertia, and 40 and C are constants.
These expressions were first derived by Harris'
from an extension of the cranking model, ' and
then shown to be equivalent to the variable mo-
ment of inertia (VMI) description.

The striking success of these formulas in fit-
ting the energy levels of ground-state rotational
bands was recently extended to an even wider
range of nuclei by allowing the parameter d, to
become negative. "Thus, most, and perhaps all,
even-even nuclei are now included in this de-
scription. The introduction of negative values
of 0 also leads to an accurate prediction of a
distinct discontinuity" in the so-called "Mall-
mann" plots, ' the graphs of E,/E, and E,/E,

versus E,/E, .
Harris's model, however, does not allow nega-

tive values for 80. Furthermore, the fact that a
nonzero ground-state energy is obtained for some
of the solutions" requires clarification. The
purpose of the present work was to search for a
classical model, similar to the centrifugal
stretching model, which would be described not

by the equations of that model but by Eqs. (1)
and (2).

In the hydrodynamical model, on which the
centrifugal stretching model is based, all the ele-
ments of mass in the nucleus take part in the
motion contributing to the total angular momen-
tum and energy. For real nuclei, however, only
certain nucleons give rise to the total angular
momentum while the rest, forming closed j
shells, do not contribute. It seems, therefore,
appropriate to search for a model in which the
total mass M~ of a nucleus is divided into a
rotating portion of mass M and a stationary part
of mass M~-M. In such a model the increase
of the moment of inertia with angular momentum
can be due either to a variation of the mass I
or to a change of its orbit, or to a combination
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of both mechanisms. In the present approach the
first possibility is chosen and it will therefore
be assumed that the mass I rotates around an
axis Z at a fixed radius Ro with an angular fre-
quency w, and that variations of the moment of
inertia arise solely from mass transfer between
the two fractions.

In order to achieve states of equilibrium of
such a system, restoring forces have to be pos-
tulated which must be overcome by the centrif-
ugal acceleration for elements of mass to remain
in the rotating part. Furthermore these restor-
ing forces must increase as more mass is trans-
ferred to the outer portion if stable states of in-
creasing angular momentum and energy are to
correspond to increasing angular velocities. It
will be sufficient to express this variation of the
restoring forces with I in terms of the differ-
ence of potential energy d V necessary to transfer
a mass dM from the central portion to the ro-
tating portion. One of the simplest possible as-
sumptions, i.e., a linear dependency expressed
by

d V =(A+BM)dM

where A and 8 are constants, B)0, leads pre-
cisely to the VMI expressions (1) and (2) as will
be shown below.

The mechanical model of Fig. 1 represents a
system useful for visualizing the above-men-
tioned assumptions as well as the nature of the
solutions that result. ' It consists of liquid con-
tained in two cylindrical reservoirs connected

by means of a thin tube. One of the reservoirs
is stationary and the other one ratates around the
first with angular velocity ~. Here the M-depen-
dent potential energy is due to the gravitational
potential difference for different fluid levels. In
fact, neglecting the mass of the liquid contained
in the connecting tube, the masses of the empty
containers, and the centrifugal deformation of
the liquid surface in the rotating reservoir, this
system follows exactly the VMI expressions (1)
and (2).

The constants of Eq. (3) can be expressed in
this case as

(4)

(5)

where g is the gravitational acceleration, p is
the density of the liquid, 8 and S, are the cross-
section areas of the cylindrical reservoirs, and
A, is the height of the liquid surface when the
angular frequency is zero.

The equilibrium condition for a given constant
angular momentum MR, ~ corresponds to a mini-
mum in the total energy of the system. Let den

be the increment in angular velocity due to the
transfer of the mass dM to the rotating portion
at constant angular momentum. Then, in addi-
tion to the increment d V in potential energy, we
shall have an increment dT of the kinetic energy
given by

dT =d( 'tu'R 'M—) =-'v'R 'dM+MmR 'dv

Since the angular momentum is constant,

MR, ~ = (M +dM) Ro(&u +d~).

From (8) and (7) we then find

So
d T = -2''R, 'dM. (8)

-M —M=-
T

ho
The equilibrium condition can then be expressed,
using Eqs. (3) and (8), as

dV+d T=(A +BM-2(u2Ro )dM =0;

AXI S OF
ROTATION Ro

therefore,

M = (-,'co'R, '-A)/B for ~' & 2A/R, ',
or

(10)

FIG. 1. Model used to visualize the assumptions and
the results of the present approach. The large cylin-
drical reservoir, of cross-sectional area Sg, is sta-
tionary while the smaller one, of cross-sectional area
S, rotates with an angular ve1ocity u. The liquid con-
tained in these reservoirs can flow freely through the
narrow tube that connects them.

M =0 for a'- 2A/Ro'.

The first case will obviously apply for any v-hue
of co if A (0 and such a situation is the one illus-
trated in Fig. 1 (h, &0). If, however, the bottom
of the rotating reservoir were higher than the
level of the liquid at ~=0 (ho(0, A &0) then we
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would have an example of the second case for
sufficiently small values of w.

For a mass Mc0 at Ap the moment of inertia
will be

8 =MA = ——A +2 co .A 2 Rp
0 g 0 4g

The kinetic energy T is

T = ,uPR 'M—=-uPR'(-co'R '-A)/B (12)

The potential energy V is, calling I, the mass
at R, for w =0 and using Eq. (3),

~ = f„dV = (AM+BM'/2)
~
„s

Since for A & 0, Mo =-A/B, we obtain from Eqs.
(10) and (13)

V = co4R04/8B. (14)

For A & 0 we have instead M0 =0, and in this case

V = ar4R04/8B-A2/2B. (14')

From (12) and (14) we compute now the total
energy E for the case in which A & 0:

A R04
E =7+V= 4) ——g +3 — Goa' 4a (15)

If we now compare Eqs. (11) and (15) with Eqs.
(2) and (1), respectively, we see that they are
identical if we identify

~, = -(A/B)R, ',

C =Ro /4B.

(16)

(17)

The constant energy A'/2B [see Eq. (14')],
which has to be subtracted from Eq. (15) in those
cases for which A & 0, accounts exactly and in a
natural way for the nonzero values of the ground-
state energies found in Refs. 5 and 6 for the
cases in which 80&0.

It is now easy to interpret the meaning of a
negative value of 80 (A & 0) in terms of our model.
It simply means that starting from a nondeformed
nucleus (M=0) the first dM will already be sub-
ject to restoring forces such that its potential
energy when transferred to the moving portion
will be Adl. These are, therefore, nuclei which
are not deformed in the ground state and the
larger the value of A the larger the angular ve-
locity which will be necessary to cause deforma-
tion.

For A &0 (do & 0) the equilibrium for u =0 is
reached when dV=O and Mo= A/B In-this .case
the ground-state moment of inertia is MpAp t~fp.

One aspect of Ref. 5 for which this model does

not seem to provide a suitable interpretation is
the so-called "nP" solution used to describe
closed-shell nuclei. This solution implies nega-
tive values of the moment of inertia of the 2'
states and in terms of our model this would im-
ply negative values for M. The fit obtained with
these solutions is, however, so good that it
seems justified to search for an interpretation
of these negative masses, perhaps in terms of
hole motion of some kind. Whether such an inter-
pretation will be possible remains an open ques-
tion.

The linear nature of Eq. (3) as well as the as-
sumption of a constant radius of rotation should
be considered as approximations which, proba-
bly, work as well as they do because of the fact
that variations in the amount of mass rotating
at a radius A0 are relatively small fractions of
the total nuclear mass. For instance, in all
cases the rotating fractions necessary to account
for the values of the moment of inertia given by
the VMI model4' for spins up to 10 are less than
26'%%ua of the total mass.

The deviations from the VMI predictions re-
cently observed' as almost equidistant high-spin
states in "Dy would be interpreted in terms of
the present approach as a leveling off in the in-
crease of potential energy [Eq. (3)] rather than
to a phase transition leading to a rigid-rotor
value for the moment of inertia.
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