VOLUME 25, NUMBER 24

PHYSICAL REVIEW LETTERS

14 DECEMBER 1970

type samples in that the peak is much higher and
they approach the T "'/2 dependence from above
rather than below.

The temperature dependence of the dielectric
constant will affect the ionized-impurity limited
mobility in the following way. As the tempera-
ture increases, thermally excited carriers in-
crease the intraband screening and tend to raise
the mobility. The dielectric constant decreases
tending to increase the mobility through more ef-
ficient intraband screening -and decrease the mo-
bility through less efficient dielectric screening.
Preliminary calculations indicate that the 300 K
ionized-impurity limited mobility of, for exam-
ple, an n-type sample with a 10**-cm ™ donor-
acceptor difference will be slightly less than one-
third that which would be expected using the de-
generate dielectric constant. This temperature
dependence should be most easily observable in
heavily double-doped samples, i.e.,

0<ZpNp=Z4Ny<ZpNp,

because under these conditions ionized-impurity
scattering will dominate neutral-defect scatter-
ing and, to fairly high temperatures, acoustic-
phonon scattering, while still allowing a large
low-temperature dielectric constant. A calcula-
tion of this effect will be shown in a later publi-
cation.

It would also appear that the interband part of

€,(w) should have a temperature dependence sim-
ilar to €;(0). A numerical calculation of this is
under way, and it is likely that this is the reason
that the 300 K optical data'? do not show the w de-
pendence predicted by Sherrington and Kohn'? in
the degenerate limit.

I am grateful to Dr. S. L. Lehoczky and Dr. C.
R. Whitsett for several discussions of this prob-
lem.

*Research conducted under the McDonnell Douglas
Independent Research and Development Program.
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Angular Momentum Theory and Localized States in Solids.
Investigation of Shallow Acceptor States in Semiconductors*
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We show that localized states in solids can be conveniently investigated using tech-
niques which are widely applied in the theory of atomic and nuclear spectra. The effec-
tive-mass theory for shallow acceptor states is formulated in a simple way and a mean-
ingful classification of these states is obtained. The eigenvalue problem is reduced to
simple radial Hamiltonians which are solved for the most important acceptor states.

All semiconductors with the diamond and zinc-blende structure have a simple conduction-band mini-
mum and a degenerate valence-band maximum.' Therefore, donor states are easily investigated®
whereas a complex analysis is required for acceptor states.’:*

A formal treatment for impurity states originating from degenerate bands has been derived by Kittel
and Mitchell® and Luttinger and Kohn® within the effective-mass theory. Approximate solutions for ac-
ceptors in Si and Ge have been obtained by Kohn and Schecter® and Mendelson and James.* Although
useful in the interpretation of the experimental results, these solutions involve elaborate computations
and do not provide a clear picture of the acceptor problem.

Experimental data on acceptor states are available for several diamond and zinc-blende crystals.
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These results show that the effective-mass approximation is satisfactory for excited states whereas,
for the ground state, central-cell effects'! must be included. Since the magnitude of central-cell cor-
rections is of great interest, accurate solutions for the effective-mass ground state are useful too.

The purpose of the present Letter is to achieve a clear insight into the acceptor problem through a
more powerful and elegant procedure than that used in the previous investigations. To this goal, we
make use of the strong similarity between impurity centers and atomic and nuclear systems. So far,
this similarity has not been fully exploited. In fact, the only attempt in this direction has been in de-
scribing the impurity center as a particle with effective mass, spin, and charge which is bound to the
impurity site through a screened Coulomb potential. It seems reasonable to assume that more profit
can be obtained from this similarity if, in addition, one investigates the impurity problem using tech-
niques of atomic and nuclear spectroscopy. The present Letter shows the soundness of this assump-
tion.

The acceptor Hamiltonian in the strong spin-orbit coupling limit, as written by Luttinger,'? is

5 )2
H= (71 + Z ¥Ys) o j; ( prJI2 +py2Jy2 +px2J22)

0
2
=25 {0, Ho 0, b, Hy L+ ot Ho - & M

when terms linear in P are neglected for zinc-blende crystals. Here {ab}=(ab +ba)/ 2, m, is the free-
electron mass, €, is the static dielectric constant, D is the hole linear momentum operator, and J is
the angular momentum operator for a particle with spin 3. The above Hamiltonian can be thought of
as describing a particle with spm % in a Coulomb potential. The first term is the kinetic energy, the
second and third represent a “spin-orbit” interaction, and the last term is the external potential.

The operators p and J appear in Hamiltonian (1) in second order only. It is therefore convenient to
introduce the following symmetric second-rank tensor operators!® with vanishing trace:

P;,=3p; pp=5;30° (2)
and
Jin (J oty d) =05, (3)

where the indices 2,k =1, 2, 3 mean x,y,2, respectively. Using the tensor operators P;, and J;p, the
Hamiltonian (1) can be written as

0
H=li§:,inL0P2"€_eo;:| grln [7’3 (Ys"'}’z)ﬁ:k] Pipdin (4)
with the Einstein convention on repeated indices.

The operators P;, and J;, are reducible tensors of the second rank. Therefore they can be decom-
posed into irreducible tensors of rank £=0,1, 2. Such decomposition contains neither the %2 =0 nor the
k=1 components. In fact, the former does not appear because P;, and J;, have vanishing trace, the
latter because of the symmetry properties

Py=Pri; Jiyp=dp. (5)

As a result, the tensor operators in Hamiltonian (4) can be expressed in terms of their second-rank
irreducible components P,(? and J,(? (¢=-2,1,0, 1, 2) as follows:

7 z_ﬁi}_:;_?’sﬂ.l’_z @), p(y_Ya=¥2 [ o) o (2] 4 J7o e > 4
7 [Zmop 7]  45m, (P )18m0 [P xg ] 24 [P XJ D] 14 [P xg @], (6)

where the usual definitions of scalar and vector products of irreducible tensor operators have been
used.?

Expressions (1) and (6) are equivalent ways of writing the same acceptor Hamiltonian but they re-
flect two different points of view as far as symmetry is concerned. Luttinger'? looked at the problem
having in mind the point group of the crystal and as a consequence he considered all the terms which
appear in (1) as having the same cubic symmetry properties. On the contrary, our approach is based
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Table I. Theoretical and experimental ionization energies of acceptor impurities. €,
is the static dielectric constant; ¥i, 7, and y; are the Luttinger valence-band parame-
ters. The parameters p and 6 are defined in the text by expressions (7) and (8), respec-
tively. The symbols in parentheses refer to the kind of impurity.

Eing Ejn,

Crystal € Y1 Y2 Y3 o 6 Theor Exp

Ge 15,362 13.23¢ 4. 27d 5.614 0.767 0.102 9.9 10.8¢ (Ga)

si 11.42 423% o0 385 1.449  o0.481 0.249 31 68.97 ()

AlSb 9.9b 5269 1.37,9 215¢ 0,700 0147 49  338(?)

GaP 10.75¢  3.83¢ 0.86% 1.48,% 0.645 0.163 50 64" (zZn)
2From Ref. 2. ¢From Ref. 7.
by, J. Turner and W. E. Reese, Phys. Rev. 127, 126 (1962). fFrom Ref. 8.
°L. Patrick and P. J. Dean, Phys. Rev. 188, 1254 (1970). 8From Ref. 9.
dFrom Ref. 14. hFrom Ref. 10.

on the full rotation group and therefore we have separated in (6) the last term, which is cubic, from
the first two which, besides having cubic symmetry, are also spherically invariant.

This rearrangement of terms suggests a more convenient set of parameters for the description of
the acceptor problem. Together with y,, we use

= (Bys+4y5)/57, (7)
which gives the strength of the spherical spin-orbit interaction, and
6= (73—72)/71 (8)

which measures the cubic contributions. In Table I we give the values of u and 6 for a few substances
as obtained from the valence band parameters y,, y,, and y; given by Lawaetz. As one can see, the
cubic term in Hamiltonian (6) is small and therefore its effects can be considered as a perturbation.
This justifies our idea of looking at the problem from the full rotation group point of view. In fact, by
doing so, we are able to write the acceptor Hamiltonian as the sum of a spherical term and a small
cubic contribution.

We first consider the _case 6=0. The Hamiltonian (6) becomes spherically symmetric and the total
angular momentum F=L+7 is a constant of the motion. Accordingly, we can classify the acceptor
eigenstates in exactly the same way and notation used for atoms with spin-orbit interaction (L-S cou-
pling). Without the spin-orbit interaction the eigenstates can be classified with the usual hydrogenic
quantum numbers. When the spin-orbit interaction is included, a fine structure is produced. The nS
states give rise only to nS,,, states while the nP states split into nP,,,, nP;,,, and nPj,.

We now analyze the nS,,, states. The most general wave function for such states is

f)L=0,d=%,F=%F)+g(r)|L=2,J=3,F=3F)), 9)

where f(r) and g(r) are radial wave functions which have to be determined. The projection of the total
Hamiltonian (6) onto the S/, subspace can be written as a 2X2 matrix whose elements are easily eval-
uated using the “reduced matrix element” technique':

sl e, (10)

(L',d,F,MIQP gL, J, F,M>=(—)W+F3
The evaluation of the 6-j symbol and of the reduced matrix elements which appear on the right-hand
side of expression (10) is straightforward and will not be given here. As a result we obtain the follow-
ing 2X2 matrix Hamiltonian for the radial wave functions f(r) and g(r):

& 2d 2 (d2 5d 3)
wtraty MartratA | |7 )
=E , (11)
@ 1d\ d 2d_86 2
M<W-;Zi7> d—;z rdar r r g g
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where effective atomic units have been used.
Following the same procedure, we obtain Hamil-
tonians for P,,,, P, and P, states. These
Hamiltonians are similar to (11) and their ex-
pression will be published elsewhere.'®

~ Exact solutions of the Hamiltonians for the S,,,,
P,,,, and P, states have not been found. We
have studied the lowest state of each Hamiltonian
using the variational technique and assuming as
trial functions exponentials times the lowest pos-
sible polynomials which behave correctly at the
origin. As an example, for the ground state of
Hamiltonian (11) we used the trial wave functions

fr)=2a%"exp(~ar);
&(r) = (2/V3)8%%r exp(~p7). (12)

The Hamiltonian for the P, ,, states reduces to
that of the hydrogen atom for P states and there-
fore can be solved exactly.

The energies of the lowest S;,,, P,,,, P, and
P,,, states are shown in Fig. 1 as a function of
the parameter u over the range of interest for
all diamond and zinc-blende crystals. These re-
sults represent the first theoretical investigation
of acceptor energy levels as functions of the val-
ence-band parameters. While the energy of the
P, ,, state decreases very slowly with increasing
K, the energies of the other states show the op-
posite behavior and increase very rapidly for u
20.5. Using the results of Fig. 1, we have eval-
uated the ionization energies of the substances
shown in Table I. A comparison of these effec-

5 T T
2 - 2P3
3 -2Ps2 8:0
4 4 - 2Pz
3a - 2P5,2(I“5) 3=0.15
3b - 2P5,2(1—'7) 3=0.15

ENERGY (EFFECTIVE RYDBERGS)

|
(8] 0.2 04 06 08

FIG. 1. Energy levels of the most important acceptor
states as functions of the valence-band parameter u.
The dotted lines show the splitting of the 2P; /2 state
produced by the cubic term for 6 =0.15.

tive-mass ionization energies with the experi-
mental values allows the appreciation of central-
cell corrections.

We now consider the small cubic term which
appears in Hamiltonian (6). This low-symmetry
term shifts the energy levels and in addition can
remove some degeneracies. For the S, ,, P,,,,
and P, states no splitting is produced and, fur-
thermore, selection rules on the angular momen-
ta show that the first nonvanishing contribution
comes from second-order perturbation theory.
The sixfold degenerate P, states have a nonvan-
ishing first-order contribution and split into a
fourfold P, ,,(T'y) and a twofold P ,,(T',) states.
Since for all the diamond and zinc-blende crys-
tals the parameter 6 is small, we consider only
first-order contributions in 6. Following a pro-
cedure similar to that used for the case 6 =0, the
Hamiltonians for the P;,,(T'y) and the P,(T,)
states are obtained.’® In Fig. 1 we give the split-
ting of the 2P, state for 6=0.15.

From the point of view of numerical accuracy,
our results are not expected to improve those ob-
tained in the previous investigations. In effect,
for Si and Ge, they are in agreement with those
reported by Schecter® and Mendelson and James.*
However, having chosen a better set of parame-
ters to describe the valence band, we are able to
give results which can be easily adapted to any
cubic semiconductor. An even greater advantage
of our approach is in the simple formulation
which, without introducing any explicit represen-
tation for the Hamiltonian, allows a general un-
derstanding of the problem and explains the valid-
ity of several assumptions made in the previous
investigations in the construction of the trial
wave functions. In fact, the assumed mixing of
a limited number of angular momenta is now un-
derstood from the small size of the cubic term.
Furthermore, our new point of view makes possi-
ble a meaningful classification of the acceptor
states and therefore a general picture of the ac-
ceptor spectrum.

It is reasonable to suppose that the present
method can be extended to other localized states
in solids. The only condition for its applicability
is that the low-symmetry terms of the Hamiltoni-
an must be sufficiently small and this condition
is often verified.

*Research supported in part by the Advanced Re~
search Projects Agency under Contract No. HC 15-67-
C-0221,
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Classical Analog of the Variable Moment of Inertia Formulas
for Rotational States in Even-Even Nuclei*
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A simple mechanical model has been found which gives the same angular velocity de-
pendence of energy and angular momentum as postulated in the variable moment of
inertia description of rotational states. The possibility for one of the two coefficients
of this description to adopt negative values follows naturally from this model. Also the
nonzero ground-state energies, which in some cases result from the variable moment

of inertia description, are easily understood.

One explanation which has been advanced for
the departure from the J(J +1) energy formula
for rotational states is the classical, rotation-
dependent, elastic deformation (B stretching).!
Much greater success has recently been obtained
using the formulas

E = 30?(d9,+3Cw?), (1)
IlI(T+1) ]2 =w(9, +2Cw?) =ws, (2)

where w is the angular frequency, 9 is the mo-
ment of inertia, and 4, and C are constants.
These expressions were first derived by Harris?
from an extension of the cranking model,® and
then shown to be equivalent to the variable mo-
ment of inertia (VMI) description.*

The striking success of these formulas in fit-
ting the energy levels of ground-state rotational
bands* was recently extended to an even wider
range of nuclei by allowing the parameter 4, to
become negative.®’® Thus, most, and perhaps all,
even-even nuclei are now included in this de-
scription. The introduction of negative values
of 9, also leads to an accurate prediction of a
distinct discontinuity®® in the so-called “Mall-
mann” plots,” the graphs of E;/E, and E¢/E,
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versus E,/E,.

Harris’s model, however, does not allow nega-
tive values for 9,. Furthermore, the fact that a
nonzero ground-state energy is obtained for some
of the solutions®® requires clarification. The
purpose of the present work was to search for a
classical model, similar to the centrifugal
stretching model, which would be described not
by the equations of that model but by Egs. (1)
and (2).

In the hydrodynamical model, on which the
centrifugal stretching model is based, all the ele-
ments of mass in the nucleus take part in the
motion contributing to the total angular momen-
tum and energy. For real nuclei, however, only
certain nucleons give rise to the total angular
momentum while the rest, forming closed j
shells, do not contribute. It seems, therefore,
appropriate to search for a model in which the
total mass M, of a nucleus is divided into a
rotating portion of mass M and a stationary part
of mass M,~M. In such a model the increase
of the moment of inertia with angular momentum
can be due either to a variation of the mass M
or to a change of its orbit, or to a combination



