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Effect of the Jastrow Correlation Factor on Nuclear Charge Distributions

G. Ripka and J. Gillespie*
Service de Physique Theorique, Centre d'Etudes Ãucleaires de Saclay, 91, Gif su-r Yv-ette, France

(Received 28 September 1970)

It is shown that for nuclear charge distributions the dominant effect of the Jastrow cor-
relation factor is to produce a new uncorrelated Slater determinant which is calculated
explicitly. This is related to the absence of the Brueckner-Pauli operator in the Jastrow
correlation factor.

In the absence of the Jastrow correlation factor
(JCF) the wave function I+& of the nucleus is the
Slater determinant I C'g, the parameters of which
should yield charge densities which fit the low-
momentum-transfer data. The JCF is introduced
so as to fit also the high-momentum-transfer
data. ' In doing so, however, one is forced to
change appreciably the parameters of the origi-
nal Slater determinant I 4',&. This shows that the
JCF changes appreciably both the high and low
Fourier components of the charge density. We
show by an explicit calculation that as far as the
charge density is concerned, the main effect of
the JCF acting on the original Slater determinant

I Cg is to produce a new (uncorrelated) Slater
determinant. As an example, we calculate this
new Slater determinant in the case of 'Ca using
harmonic oscillator wave functions. However
our conclusions are independent of the basis func-
tions used. The complete details of the theory
and of the calculation will be published else-
where.

We first calculate the density matrix,

p;, =&+la, 'a;l+&, (2)

with the Jastrow wave function (1) and in the sin-
gle-particle basis of oscillator wave functions.
For the calculation of the density matrix a dia-
grammatic perturbation formalism was developed
by Gaudin. ' We included all terms up to second&
order in h =f-1 and first order in g=f2-1. In
terms of p;, the charge density is

p(r) =XV';( )V,*(r)p...
$$J

where the sum is limited to proton single-parti-
cle states p;(r). With the diagrams we have in-
cluded to calculate p;, , the expression for the

There have been many attempts' to fit the elas-
tic electron-scattering data by using charge den-
sities calculated with Jastrow correlated wave
functions'

I@&= ~~
II f(r;, )IC',&.

1

charge density becomes the same as those used
in Ref. 1.

We then diagonalize the density matrix p;, :

Q, p;, V, "=n„V,".
This yields a set of new orbits y„'(r) =L.V, y;(r. )
%e then construct the new Slater determinant
IC, '& with the & orbits pu' belonging to the eigen-
values which are close to unity. We can then sep-
arate the charge density (3) into two terms,

p(r) = p. '(r) + p. (r),

where p, '(r) is the charge density due to the new
Slater determinant I@,'& and p, (r) is the remain-
der which we define as being due to the effect of
correlations:

p. '(r) = Z I y (r ) I',
a(g )

p. ( )= Z .IV.()l'-Z(1- .)IV.()l', (&)
a{p) n(p)

where the indices o.(It) and n(P) denote, respec-
tively, the occupied and unoccupied proton orbits
in I 4, '&.

The definition of the new Slater determinant
I 4, '& together with the separation (5) of the
charge density has the following two properties:
(1) It is independent of the basis states used to
calculate the density matrix p;,. (2) It will yield
p, =0 if the state I+& is any Slater determinant.
Indeed, it may be shown that the necessary and
sufficient condition for a many-particle state I+&

to be a Slater determinant is that the density ma-
trix p should satisfy the equation p'= p, in which
case its eigenvalues are equal to either 0 or 1.

Figure 1 shows charge densities of "Ca (un-
corrected for the proton form factor and center-
of-mass motion) using a harmonic oscillator con-
stant (mes/h)' ' =0.55 fm ' and a, Jastrow function
1-f'(r) = exp( P'r') wit—h P = 1.4 fm '. We have
verified that these parameters yieM a charge
density [Eq. (3) or (5)] which, at high momentum
transfer q-3.5 fm ', fits the fo".m factor given
in Ref. 3 and derived from the 750-MeV elastic
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sity due to Brueckner correlations [Fig. 24(b) of
Ref. 5] which also yields zero particle-hole ele-
ments for the density matrix.

Finally we write the expressions used to calcu-
late the density matrix p;,. in terms of the (not
antisymmetrized) matrix elements of the Jastrow
factors h =f-1 and g=f2-1:

A 9 Cps~-(po)s~'=psi peg +pap r

p, ,~ = Q +[4(mn l h l ik) -(mn l h l ki) ] (jk l h l mn)
mn&E k

p, , = g [4(jmlgl im)-(jmlglmi)] if i, j-+,
= 0 otherwise.

FIG. 1. Charge densities of Ca.

I

6 l ffA where

E;,=1 if i &F,j&I", or i I'" and j&I'",

electron scattering on "Ca. The dotted line
shows the charge density po of the original Slater
determinant 14o) made up of oscillator orbits.
The solid line is the charge density [Eq. (3) or
(5)] of the Jastrow wave function (1). The dashed
line is the charge density p, '[Eq. (6)] of the new
Slater determinant I 4'o').

The reason why the JCF produces a new Slater
determinant is essentially due to the fact that the
Jastrow factor f(r) scatters particles into all
states and not only into states in which both par-
ticles are outside the Fermi sea of IC'g as in the
case in Brueckner theory. Indeed if we replaced
the function f-1 by the operator Q(f-1), where
Q projects pairs of particles outside the Fermi
sea, ' then (to the order in which we have calculat-
ed p;;) all the particle-hole elements of the den-
sity matrix p;, would vanish; the diagonalization
(4) would then yield orbits p~ which are linear
combinations of the occupied orbits in IC'g so
that I @o') = I 4'$ and p, ' = p, . For this reason it
is not possible to compare p-pp obtained with a
Jastrow wave function (1) with the change in den-

=2ifi, j~E,
= 0 otherwise.

The sums run over all the spatial orbits and I"
denotes the last filled orbit of I 4'g.

The authors wish to thank M. Gaudin for teach-
ing them the diagrammatic perturbation expan-
sions appropriate to Jastrow wave functions.

*Permanent address: Department of Physics, Boston
University, Boston, Mass. 02215.

F. C. Khanna, Phys. Rev Lett. .20, 871 (1968};W. J.
Gerace and D. A. Sparrow, Phys. Lett. 90B, 71 (1969);
C. Ciofi degli Atti and N. M. Kabachnik, Phys. Bev.
C 1, 809 (1970}; M. E. Grypeos and C. Ciofi degli
Atti, Lett. Nuovo Cimento 2, 587 {1969).

R. Jastrow, Phys. Rev. 98, 1479 {1955}.
~B. F. Frosch, B. Hofstadter, J. S. McCarthy, G. K.

Noldeke, K. J. van Oostrum, and M. B. Yearian, Phys.
Rev. 174, 1980 (1968).

M. Gaudin, private communication.
'J. W. Negele, Phys. Rev. C 1, 1261 (1970}.
A correlation function which includes the Pauli

operator was considered by A. De-Shalit and V. F.
Weisskopf, Ann. Phys. 5, 282 {1958).

1625


