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We study the asymptotic behavior of two-tower exchange with linked ends in ¢® theory
using Feynman parameter techniques. We present a new result for the asymptotic be-
havior of the Mandelstam graph and note that only this graph contributes for the two-
tower case. We generalize the above to the N-tower case and find the eikonal form.

Recently there has been considerable interest
in the relativistic analog of the eikonal approxi-

mation within the context of various field theories.

Since the exchange of elementary quanta does not
generate inelastic contributions in this picture,

it is natural to study the exchange of more com-
plex structures. One such simple model is the
exchange of towers whose ends are linked in all
possible ways. Multitower exchange will gener-
ate Regge-cut behavior at high energies. Such
models have been discussed by Cheng and Wu!

in quantum electrodynamics and by Chang and
Yan?® in 2¢® using momentum-space techniques.
Because of the fundamental complexity of tower-
like Feynman diagrams, it would seem prudent
to investigate in detail the asymptotic energy be-
havior of individual sets of towers. The two-
tower case in A¢® is simple enough to be attacked
by Feynman parameter techniques and has the
additional virtue of giving the phenomenologically
interesting leading contribution to the two-Reg-
geon cut.

We have done such a detailed study for the two-
tower case (see Fig. 1) using methods due Polk-
inghorne.®* For simplicity in calculation, we
retain for each order of the coupling constant
only the leading logarithmic s contribution. In
Regge language this can be looked on as expand-
ing only to lowest order in the coupling constant,
for the residue and trajectory functions.

We write the amplitude described by each con-
figuration in the form

do[C(a)]"6(1-25; ;)

M=K ela)s +a(a, D+ie] ™

1

where « is a constant, « stands for a generic

Feynman parameter, and s =(p,+p,)? is the
asymptotic variable. In investigating the class
of such integrals, one must keep in mind the fol-
lowing observations.

For elementary line exchange, graphs in the
same order in the coupling constant all have sim-
ilar asymptotic behavior and therefore are all
equally important. Delicate cancelations occur
when the sum over all permutations of the parti-
cle lines is performed.

Tower exchange, on the other hand, has the
property that only a small number of diagrams,
the so-called nested towers shown in Fig. 1, con-
tribute to the asymptotic behavior. It is a well-
known result that planar diagrams do not con-
tribute either to the J-plane cuts on the physical
sheet or to the leading asymptotic behavior. How-
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FIG. 1. Four nested two-tower graphs.
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ever, in the tower-exchange case, the statement E’_‘%__A D__?_;A_
can be extended to say that non-nested, nonplanar Q Q

Qg Q3

graphs also do not contribute to leading order in
Ins.

The four nested diagrams of Fig. 1 can all be
distorted into the canonical Mandelstam form of
Fig. 2. Summing over ladder rungs then pro-
duces overcounting by a factor of 4. This is
handled in a simple way by observing a hereto-
fore overlooked property of the Mandelstam
graph. Leading behavior of the Mandelstam
graph is associated with a pinch due to the cross-
es combined with the vanishing of the rung param-
eters of each ladder. After the pinch conditions
have been imposed, the vanishing of either pair
of parameters (a,, @,) or (a,, a,) causes the g
function to vanish. In the (o, a;) case, the large
momentum P goes along ABCD; and in the (a,, a,)
case, the path AEFD. Similar statements hold
for the primed parameters at the bottom of the
diagram. The asymptotic behavior then comes
from four disjoint pieces of parameter space.
Returning to Fig. 1, one sees that if all diagramsl

1

_ dzq -\ [ a(a)+a(a~?)
M(S,t)"é—! 25 WV(Q)Y(Q‘DS )

where

& =p{1+exp[-ira@]}, B=2%, af)=
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FIG. 2. Two-tower Mandelstam graph.

are retained but only the contributions in each
arising from the large-momentum path staying
on the edges of the diagrams are counted, then
each possible path in the Mandelstam set is
counted once. This observation justifies the ei-
konal picture.

The calculation of the asymptotic behavior of
the individual diagrams is lengthy and the details
will be given elsewhere.*® After summation over
the ladder rungs we find

@)

k [‘1"{2 + mz] - 1[ (E_F)z + mz

dz
(2m)?

Equation (2) is just the result of the naive eikonal model. We emphasize again that the set of graphs
that generates this form is very small, consisting of the Mandelstara graph and its associated crossed
graphs. The three crossed graphs generate the signature factor of the Reggeon.

It should be noted that Eq. (2) differs from the result given for the Mandelstam graph in Ref. 4 which
has been widely quoted in the literature. Other authors apparently missed the fact that once pinch con-
ditions are imposed, two additional scalings along the « lines are possible.

In extending these results to the N-tower case, one must be extremely careful, since the leading
contribution to the N-Reggeon cut does not come from the leading asymptotic behavior of the individual
diagrams.” Two of us (G.M.C. and R.L.S.) have studied these graphs using momentum-space tech-
niques,® and we find that if one works to lowest order in the trajectory and residue functions, the Reg-
ge-pole amplitude does indeed eikonalize. The N-Reggeon—cut contribution is given by

1d2k 0(-»~
u,=1fas) G se P

which implies the full amplitude

-5 F,) s -5 K, 3)
i=1 =1

M‘=i} M, =2is [ @b exp(iT-B)lexp[is (B, s)] -1}, @)
where
az k =y ok
(b, s)—* @ exp (—ik- b)y(&)s*¥),

Equation 3 is, of course, just the result predicted by the simple eikonal model.
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It is clear that at each tower level, all graphs
do not contribute to the final result. To find the
subset of those which do is a major problem.
Two of us (B.H. and D.K.S.) conjecture that only
diagrams which are generalizations of the nested
Mandelstam graphs can contribute to the final
leading asymptotic form,% and a naive calculation
along these lines does indeed generate (4). How-
ever, work in progress indicates that it is dif-
ficult to prove which of the Mandelstam nests
contribute at each order, because of the difficul -
ty of making statements about general pinch-
ladder structures at the N-tower level.
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This does not appear to be the case in quantum elec-
trodynamics.
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A simple way of introducing second-class currents has been suggested by naturally
incorporating a tensor density in the theory. A possible explanation for large £ and A,

parameters in K;3 decays is also proposed.

In a series of interesting papers,’ Wilkinson and his collaborator recently suggested that ft values
of various nuclear B transitions are consistently different by 10% from those of corresponding mirror
nuclei and that we may have to introduce the so-called second-class current? in order to explain the
difference. Previously, the possible existence of the second-class current has also been advocated by
some authors® so as to explain certain data on y-meson capture by the nucleus as well as B decays,
although the conclusion appears to be far from definite.*

In this paper, we shall assume the existence of second-class current and shall propose a simple
model for it. To this end, we first assume the existence of a charged intermediate vector boson. Then
the standard weak-interaction Hamiltonian may be expressed® by

H,=g[j,(x)+1,(x)]W,(x)+H.c.,

(1)

where j ,(x) and ,(x) represent hadronic and leptonic currents, respectively, and W ,(x) is the vector-
boson field. Now in addition to H, given above, we postulate the existence of another interaction in-
volving the first-order derivative of W (x). The most general form for it is evidently written as

=)0 = W)= 0, 0] 0, W, 00+ W)+ 5605 9,0 B, @)

)

where 7',,(x), 6,,(x), and S(x) are antisymmetric tensor, symmetric tensor, and scalar densities,
respectively. Moreover, we assume that these new quantities are purely hadronic in origin without

containing any leptonic field.

Up to the second order in g, the addition of the new Hamiltonian H, is effectively equivalent to re-
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