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We study high-energy elastic and inelastic processes in a p theory based on the s-
channel iterations of t-channel ladder diagrams. The main results are the following:
(a) The total cross section goes to zero, a constant, or (lns)' for the coupling constant
being smaller than, equal to, or larger than a critical value. {b) Inelastic differential
cross sections are computed and the s-channel unitarity is explicitly verified. (c) One-
particle spectrum, multiplicity, number distribution, etc. are presented. The implica-
tions of these results to hadron physics are discussed.

Because of lack of a better alternative to the
conventional perturbation expansion, quantum

field theory has not been proved to be useful in
the analysis of high-energy behavior of elastic
and inelastic scatterings in strong interactions.
As the recently developed infinite-momentum
technique permits one to handle the leading high-

energy behavior of a very wide class of Feynman
diagrams, ' it may be hoped that study of certain
field-theory models will at least reveal some
general qualitative features concerning the ques-
tions mentioned above. Much work along this line
has been done by many authors. ' ' On the basis
of their results of high-order calculations of the
elastic-scattering amplitude in massive quantum
electrodynamics (QED),' Gheng and Wu recently
made a number of predictions on the elastic-seat-

tering amplitude, the differential and integrated
elastic cross sections, and the total cross sec-
tion for hadron-hadron scattering at infinite ener-
gy. One may hope that a simple model with y'
coupling mill also give the same qualitative pre-
dictions as @ED; furthermore, the simplicity of
the model allows one to draw more physical con-
sequences. In this Letter we report some predic-
tions of the simple model with a y' coupling for
elastic and inelastic hadron scattering at very
high energies.

Our model is defined as follows: For the elas-
tic-scattering amplitude we first summed the
leading terms in each order of perturbation of
the t-channel straight ladders plus those obtained

by interchange of the Mandelstam variables s and

We then performed the s-channel iteration
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FIG. 1. (a) t-channel ladders. (b) Example of s-
channel iteration of t-channel ladders in (a); permuta-
tion among the legs of all ladders is understood.

with the t-channel ladders as single units. %e
are only interested in the physical regions in
which the incident particles retain their large
momenta; i.e. , the legs of the exchange ladders
do not carry any appreciable fraction of the large
incident momenta. This procedure leads to the
eikonalization of the t-channel ladders. " For
the inelastic production amplitude we find that the
dominant contribution comes from diagrams with
any number of totally open ladders modified by
unopen ones. The diagrams contributing to the
elastic- and inelastic-scattering amplitudes are
shown in Figs. 1 and 2, respectively. The main
results of our calculations are the following:

(a) The total cross section has completely dif-
ferent high-energy behavior for the weak-cou-
pling, the critical-coupling, and the strong-cou-
pling eases according to whether g'/16m'1), ' 2 is-
less than, equal to, or greater than zero. (The

I 2

Jk iE )k ~ ~ ~

a) qadi

(b)

FIG. 2. (a) Example of unitarity diagrams for a gen-
eral production process in which two ladders are
opened. The solid lines cut by the dashed line corre-
spond to the real final particles. On each side of the
dashed line, permutation among the legs of open and
unopen ladders is understood (b) Kinematics of an
open ladder in detail.

coupling constant g is defined by Zl = -',gp'. ) In
the first case, the Born term dominates at large
energy, and the cross section goes to zero as s

In the second case, the total cross section
approaches a constant. In the third case, howev-
er, the total cross section increases like (lns)'
Bt large s, i.e. , it saturates the Froissart bound.
Since the first case is rather trivial, we shall
not discuss it in detail.

(b) The total, elastic, and inelastic cross sec-
tions 0&, 0» and 01 are the same as those ob-
tained from an s-dependent absorption model:

o, =2fcPf [I-e """']
(1)

fy&f)[1 e -A(s, b )]& & f+g[1 e-&A(s, b)] (2)

with b the impact parameter and A(s, b) an opaqueness given later. At large energy, and for the strong-
coupling case, these cross sections reduce to

where b, „is found to be proportional to lns. These results agree with those in QED. For the criti-
cal case, only a single ladder contributes at s = ~. It leads to a constant or and era cc 1/lns.

(c) The inelastic processes are those shown in Fig. 2. From the differential inelastic cross sections
for multiparticle states, we can compute the one-particle spectrum, number and energy distributions,
etc. The one-particle spectrum for a detected particle with four-momentum (k', k) is given by

4 16m'g' 8s'p, ' i ~ (2)) )' (q'+ p. ')'[(k+ q)'+ )().']' (2w)'2k' '
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P (n) = (2 lns)"/(s'n! ).

We shall only outline briefly our calculation. The details of the calculations will be published else-
where. First, the sum of leading lns terms in a t-channel ladder is well known. It leads to a struc-
ture of a Regge pole'.

T~ = —i''[n(k')+1]s (6)

The s-dependent factor drops o« for the critical case. The one-particle spectrum leads to a d~/~ dis
tribution in the longitudinal momentum, and an s-independent transverse-momentum distribution.

(d) The number distribution function P(n) for the strong-coupling inelastic processes is a superposi-
tion of Poisson distributions in the impact space:

P(n) = (rb, „') ' Jd'be (' ~B(s,b)"/n!, (5 )

where B(s,b) is related simply to the opaqueness A(s, b), and has the same size b,„E.quation (5a)
has a longer tail at large n than a single Poisson distribution. For critical coupling, the numbex dis-
tribution is simply a Poissonian„

4m (27()' [(q+ —,'k)'+ g'][(q ——,'k)'+ p'] '

where k is the momentum transfer with components only in the 1,2 plane. The s-channel iteration of
these ladders in the manner described previously gives the standard eikonal form

T(s u') =-i2sj'd'be "'[1-e "("~]

where &(s, b) in our model is given by

dk n k2
A(s, b)=,e'" [n(k') + 1]s"'

2s (2a)'

The "potential'* given by (9) is purely imaginary. Thus our model is purely absorptive and the elastic
amplitude is dominated by its imaginary part. Equations (1) and (2) then follow from (8). As s- ~,
A(s, b) behaves asymptotically like (s "' '/lns) exp(-const b'/lns). For o. (0)-1 =g'/16m'p. '—2 &0, A(s, b)
vanishes at large s, as does the forward-scattering amplitude. However, wheng'/16m'p, '-2&0, A(s, b)
acquires an increasing s dependence. Hence, the strength of the absorptive potential increases as a
power of s. According to the original argument of Froissart, the effective xange for such a potential
should increase as lns. In our model, the range b,„ is

(10)

nearg'/16m'p'=2, and a somewhat different coefficient for (lns)' for largeg'. Since &(s, b) varies
rapidly at large s from infinity to zero as we increase b = ~b~ passing through b, „, we have e "(' ~

=8(b —b,„)where 0(x) is the step function, from which Eq. (3) follows. If a(0)=l, A is small and

1—e =A. Hence or is constant and vs ~1/lns.
We now turn to the more interesting case of production processes. First of all, we find that the dom-

inant px'oduction mechanism is given by the diagrams shown ln Fig. 2. Namely, given the elastic am-
plitude corresponding to Fig. 1, the final states produced by the unitarity cut are those obtained by cut-

ting through every rung of any number of the ladders, as in Fig. 2(a). This can be easily understood

since the momenta of the lines connecting the rungs are spacelike and therefore these lines cannot be
realized as final particles. The lines at the far right and far left carry the large longitudinal momen-

tum +I' supplied by the two initial particles, while the other lines associated with each ladder have on-

ly a vexy small fraction of the longitudinal momentum I'.
The amplitude for an inelastic process can be written straightfoxwardly in the impact-parameter

representation. The inclusion of unspht ladders leads to a factor e ~" ~, just as in the elastic scat-
tering. The amplitude can be wr itten as

~ ~ cf
T(q) =2is fd'be ""e"" '

(all open ladders) -2s (2+) g V~g + p
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To obtain the contribution to the inelastic cross section, we square the matrix element (11) multi-
plied by the overall energy-momentum —conserving delta function and integrate over the phase space.
The two halves of each open ladder rejoin to give simple results. In this way we obtain the partial
cross section for N ladders open by the unitarity cut,

o = (1/¹)fd be " ' [2A(s, b)]", (12)

which sums up to the total inelastic cross section in (2). The attenuation factor e (' ) in (11) ensures
that inelastic contributions are always finite and consistent with Froissart bound. If we calculate the
cross section for a particular channel of n soft-particle emission, then we get the particle number dis-
tributions P(n) as given by (5) as s-~.

If we leave the momentum of one soft particle unintegrated in calculating OI, we obtain the one-parti-
cle spectrum

4 (21() (q + p, 2) [(k+q) + p, ] (21()22ko'

(n) Sa(0)(1-2a)- (1+2a) sa
lns 1.ns

(n) = (c/lns)s (14)

From (13) or (5b) we obtain an average multiplic-
ity cc lns for critical coupling. For strong cou- fied to
pling the multiplicity is

(18)

(n) ~s', (16)

where a is a parameter to be determined. This
procedure will affect our previous results by the
substitution

lns —(I-2a) lns (17)

in the elastic and inelastic amplitudes. The same
cutoff is to be applied to every particle, virtual
or real, so that general principles, such as uni-
tarity, can be maintained. Equation (14) is modi-

with c a, constant and n(0) =g2/16'' p, —1. This re-
sult has a serious defect. As the coupling be-
comes very strong, the multiplicity may increase
faster than the ultimate limit vs allowed by ener-
gy conservation. The inconsistency can be traced
back to the inadequacy of our approximation
which neglects the energies of the soft particles
in the energy-conservation condition. The (lns)"
factors which eventually exponentiate to a power
of s come from the longitudinal phase-space in-
tegrals

2 f dk ))
/ko = lns. (15)

The upper limit is only an order-of-magnitude
estimate. A more reasonable cutoff is to assume
that the upper limit is most probably given by the
average energy shared by each particle s'i'/(n).
If (n) grows as a power of s, the correction be-
comes significant. To correct this error, we
propose a self-consistent physical procedure.
Let us assume that, within insignificant logarith-
mic correction,

since we demand that this expression be consis-
tent with the original assumption (16). This gives

(Z'/16~'V')-2 ~(o)-1
(g2/8)(2p, 2)+1 2a(0)+ 3' (19)

As g'- ~, a approaches the limit &, no longer in
conflict with energy conservation.

In the following we further discuss the results
obtained above. Our proposed cutoff procedure
has the interesting consequence that the total
cross section cannot grow indefinitely with in-
creasing coupling constant. It approaches a limit
o'z(g'- ~) = —,

' ()(/p. ')(1ns)'. An increasing multi-
plicity such as (18) is not inconsistent with ex-
perimental data. available. Equation (4) shows
dx/x distribution for the longitudinal momentum
of an emitted soft particle. Feynman's scaling
hypothesis' for the one-particle spectrum is sat-
isfied for critical coupling, but is violated for
strong coupling by the presence of the factor s'.
The violation will be weak if a is small as sug-
gested by a slowly increasing multiplicity ob-
served empirically. The possibility of a weak s
dependence in the one-particle spectrum should
be looked for experimentally.

However, the transverse momentum spectrum
predicted by (4) is in contradiction to available
data which all indicate a Gaussian or exponential
falloff for the transverse momenta. This slow
falloff for the transverse momentum is due to the
lack of a long-chain correlation and the pointlike
vertices in this model.

In conclusion, we make the following remarks:
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(1) The direct verification of unitarity as ex-
pressed by os++;„,~ o, '" = o.r is an important
consistency check for the treatments of elastic
and inelastic scatterings. Since a large fraction
of the total events in high-energy hadron scatter-
ing are inelastic, a theoretical handling of these
inelastic states consistent with that for elastic
ones is desirable. Our treatment here perhaps
is a meaningful beginning for such a theoretical
development.

(2) Our results in terms of a single impact-pa-
rameter representation very likely are due to our
neglect of fragmentation processes. ' In a more
general, though not necessarily perfect, approach
we may picture that both the colliding particles
first dissociate into fragments and the fragments
from the target scatter with those from the pro-
jectile. Our present calculation presumably ap-
plies only to the individual scatterings between
the fragments.

(3) The multiplicity difficulty encountered in
this study is a warning of the danger hidden in
this approach of summing leading terms. This is
particularly so because the inconsistency cannot
be easily detected in the gross results such as
the elastic amplitude and elastic and total cross
sections.
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Note added in proof. —After submitting this pa-
per, we were informed that similar results were
also obtained by Hasslacher et al."

*Work supported in part by the U. S. Atomic Energy
Commission and the National Science Foundation.
fPermanent address.
f.Address after 1 September 1970: Laboratory of

Nuclear Studies, Cornell University, Ithaca, N. Y.
14850.

For a conventional approach, see, e.g., B.J. Eden
et al. , Vie Analytic S-Mat~i@' (Caxnbridge Univ. , Cam-
bridge, England, 1966).

S. Weinberg, Phys. Bev. 150, 1313 (1966).
II. Cheng and T. T. Wu, Phys. Bev. Lett. 24, 1456

(1970), and references cited therein.
S.-J. Chang and S. Ma, Phys. Rev. 180, 1506, and

188, 2885 (1969); S.-J. Chang and P. M. Fishbane,
Phys. Bev. D 2, 1104 (1970); M. Levy and J. Sucher,
Phys. Bev. 186, 1656 (1969); see also R. L. Sugar and
R. Blankenbecler, Phys. Bev. 183, 1387 (1969).

For applications to leptonic processes, see S. D.
Drell, D. J. Levy, and T. M. Yan, Phys. Bev. Lett.
22, 74 (1969), and Phys. Bev. 187, 2159 (1969).

B. W. Lee and B. F. Sawyer, Phys. Rev. 127, 2266
(1962), and Ref. 1.

M. Froissart, Phys. Bev. 123, 1053 (1961).
B. P. Feynman, Phys. Bev. Lett. 23, 1415 (1969).
J. Benecke et a/. , Phys. Hev. 188, 2159 (1969).
B. Hasslacher, D. K. Sinclair, G. M. Cicuta, and

B. L. Sugar, following Letter [Phys. Bev. Lett. 25,
1591 (1970)].

1590


