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folding the theoretical distribution of Drechsel
and Maximon' and of Liou and Cho' with the ex-
perimental noncoplanar x'esolution. The Drech-
sel-Maximon prediction' was based on the Ha-
mada- Johnston potential; an almost identical re-
sult was obtained using the Reid potentia. l. The
Liou-Cho calculation' was also based on the Ha-
mada- Johnston potential, but a relativistic spin
correction was included. The agreement with
either of these calculated distributions is good.
This agreement validates the use of the Dxech-
sel-Maximon distribution for coxrecting experi-
mental data for noncoplanarity in this enexgy re-
gion. "'

Figure 3 shows the energy d3,stlibution of
events plotted without I egard to angle of nonco-
planarity. A total of 370+ 26 events is attxibuted
to PPB. The Drechsel-Maximon noncoplanar
distribution was used to calculate a multiplica-
tive factor of 1.384 to correct for the effect of
noncoplanar acceptance. This leads to a coplan-
ar cross section

If the correction factor is based on the I iou-
Cho distribution, the coplanar cross section is
3.3% lower. Our result confirms earlier Oak
Ridge measurements, which ax'e generally below
currently accepted predictions.

Table I shows our coplanar cx'oss section in
comparison with theoretical 30'-30' cross sec-
tions estimated for 64.4 MeV fx'om calculations
at 61.7 and 65 MeV. The discrepancy between

this measurement and all these theoretical cal-
culations is outside the experimental error.
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We show that the ground-state energy for a Hamiltonian Ho+ Jg g):y g):dx (g Q L ~L2;
g~ 0; IIO= free Hamiltonian for Bose particle of mass m in space-time of two dimen-
sions) may be determined from the Feynman perturbation series by the method of Sorel
summability. This demonstrates that sumIIlability methods can be applicable to diver-
gent series in systems with a continuous inflxlity of degx'ees of fleedoIIl.

We prove here that for a spatially cutoff (y'), theory' the ground-state energy can be recovered from
the (Feynman) perturbation series by the method of Borel summability. This represents a merging of
two trends in mathematical physics. In the first place, considerable effort has gone into the study of
the analytic pxoperties of the levels of the anharmonic oscillator2 and the proof that in various cases,
one can recover the levels from the pertuxbation series by the Pads' or Borel" method despite the
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fact that the series is divergent. The second trend involves the construction of two-dimensional field
theories. Using early results of Jaffe and Nelson, ' Glimm and Jaffe developed' an impressive amount
of lore for (y ), field theories without cutoffs by studying the cutoff theories. Various refinements and

extensions have been made by Cannon and Jaffe, Rosen, Segal, and Simon and Hoegh-Krohn. '
We deal here with Hamiltonians H, +P V with" H, = f(k'+m')'"a*(k)a(k)dk and" V = fg(x):y'(x):dx with

g &L'&L; g~ 0. This theory has a continuous infinity of degrees of freedom and is known" to have
divergent Feynman perturbation series. Our proof also applies without change to a theory with box
cutoff rather than g(x) cutoff.

%e establish the Borel summability by using Watson's theorem" which says the following: Given

any function f(P), analytic in (P I largPI & 8; 0& IPI& Bj=D with 8 &m/2, suppose f(P) has an asymptotic
series f-ga„P" with strong control over the remainder:

n=0

uniform for P EDand. n, where o and A are constants. Then the asymptotic series in Borel summable
to f, i.e., the function

(defined for I»3I&cr ), has an analytic continuation to jpIIarg pl&8-z/2]; and for IPI&8, larg pl&8-w/2,

f(P) =I e *G(Px)dx.

In particular, "we prove that the ground-state energy is completely determined by the Feynman ser-
ies.

Our proof is in four steps:
(1) For any 8 &»», and any I, If.

"
spec(H, ) [we denote the spectrum of an operator A by spec (A)] (P, +PV

-i) '- (H, -X) " in norm as I pl-0 uniformly in largpl&8. This represents a critical improvement of
the results of Simon and Hoegh-Krohn' who prove a similar result for (y' ), theories if 8&v/2. By
standard operator theory, "it suffices to prove this for some fixed ~. By realizing V as a multiplica-
tion operator, "we can write V=V+-V &0; V+V =0. Let IVI=V++V, U= IVI/V, and W= IV)". Since

II(H. +U-&) '-(H. -&) 'll= IOI II(H;&) 'WUW(H, +PU &) 'll, -
it is sufficient to prove that ll(H;X) 'W II and I

Pl'" IIW(H, +PV-X) '
ll are bounded uniformly for some i

and for all P in the sector of interest. Since" W'= IVI ~aN'+b &aH, '+b for some a and b, (H, -X) 'W'

x (H, —p) ' & Cz' for any A. g spec(H, ) so Il(H, -A,) 'W II& C», . To prove the other bound, we use sectorial
considerations. Pick 8 so that for ally with lyl= IPIB, and all P with largPI&8, arg(P+y)&(ran+8)/2.
Consider H, +P +VyW= Ho(+y+P)U++(P —y)V . By arguments of Simon and Hoegh-Krohn, ' this is uni-

formly sectorial for all P with largPI&0, I/I&1, ally with lyl= IPI8; that is, there is an n with Io. l

=1 and a b so that for all vectors u and all such P, y,

Re[o.(u, (H, +PU+yW')u)+b(u, u)]& 0,

or

IP IB I (u, W'u)
I

& Re [a (u, (H, + P V—X)u) ] + c(u, u).

Since the Ho+I3V are known to be uniformly sectorial, we can find A/spec(Po+pV), all relevant p, with

(H, +PV—A)
' uniformly bounded. Then

I&IBIIW(P. +&U-&) 'ull'-Reb((H. +AU-&) 'u, u&]+bII(H. +PU-~) 'ull'

- Ilull'[ll(H. +PU-&) 'll+b II(H, +OU-&) 'll'].

This proves the uniform bound on IPI'~'IW(H, +PV-X) 'I and hence completes the proof of step 1.
(2) For any 8&»», there is aB so that H+pV has only one eigenvalue near 0 for Ipl&B, largpl&8;

and the energy of this eigenvalue is analytic in (PI largPI&8, IPI&8'I. This is a direct consequence"
of (1) and the fact that H, has 0 as an isolated, nondegenerate eigenvalue.
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(3) The Feynman series for the ground-state energy is asymptotic as jPj-0 uniformly in jargP !&8,
any () &w. Once one has the control of the resolvent given by (1), this follows as in the work of Simon
and Hoegh -Krohn. '

(4) One has strong control over the remainder to the asymptotic series, i.e., if E(P) is the ground-
state energy and a„ the Rayleigh-Schrodinger (= Feynman!) coefficients, then, given 8 &n, there are
A, o, B so that

IE(p)- Zs.p"I &~o""(/V +1)!Ipl""

for all p with jpl &B, larg Pl«. By arguments identical to those used by Qraf fl, Qrecchi, and Simon, 4

it is enough to prove

Il[v(H -)) I]""a Il&~~"'I(~+1)!

for some A and o and all n, all ~ with jX!= ~2 [that is, once {1)is proven]. Write

v= Qv, ,j=0
where each V. has j creation operators and 4-j annhilation operators. Write jj[V(Ho-X) '"'']Ac jj as
5"' ' terms of the form

n+ 1.

Ilv. (/f, -&) '& (&.-&) ' ~ ~ l', (/f. -&) 'f/. Il=fl ri (&+1)[(&+1) '& (/v+1) '][(&+1)(B.-&) ']f/. II

A,'= l

g {4e+1)II[(++1)IV,. (++1}-I](++1)(e,-) )-If),
ll

& 5"' I(n+1)!II"' '

o=[ max l(!Vy1) 'P',.(!V+1) 'I] sup I(!V+1)(H -A) 'I.
j- —

O 444 4 jzj=-.'n

This completes the proof of (4) and thereby by Watson's theorem of the Borel summability.
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TllR't is R t!1801'y wjth 1nteractlon LRglRllglRll —p (x) ' in space-tB118 of two dlIIlenslons (1 spRce+ 1 tlllle) ~ spR
tially cutoff means that the formal object f:q (x):dx is replaced with the self-adjoint operator fg(x): y4(x): dx.
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SWhile the Pads method is far superior for computational purposes, it is much harder to prove applicable. For
finite-dimensional oscillators, the Pade method is only known (Ref. 3) to work for one-dimensional x and x per-
turbations; the Borel method works for x ~ perturbations and in n dimensions.
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~06k and Ch refer to one-dimensional integrations.
The basic result depends ony {as opposed to y ) in two ways. First, we use inequalities IVj&aHO +/l in step

(1) below to prove ~-e analyticity; secondly, we prove an n.'growth of certain coefficients. It may be possible to
prove z eanalyticity for yI~—, but for y™theories the analogous coefficients almost surely have [II(m —1)j!growth.
To apply Borel methods to such a series one needs &~(m-1)+c analyticity which requires some analyticity off the
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We study high-energy elastic and inelastic processes in a p theory based on the s-
channel iterations of t-channel ladder diagrams. The main results are the following:
(a) The total cross section goes to zero, a constant, or (lns)' for the coupling constant
being smaller than, equal to, or larger than a critical value. {b) Inelastic differential
cross sections are computed and the s-channel unitarity is explicitly verified. (c) One-
particle spectrum, multiplicity, number distribution, etc. are presented. The implica-
tions of these results to hadron physics are discussed.

Because of lack of a better alternative to the
conventional perturbation expansion, quantum

field theory has not been proved to be useful in
the analysis of high-energy behavior of elastic
and inelastic scatterings in strong interactions.
As the recently developed infinite-momentum
technique permits one to handle the leading high-

energy behavior of a very wide class of Feynman
diagrams, ' it may be hoped that study of certain
field-theory models will at least reveal some
general qualitative features concerning the ques-
tions mentioned above. Much work along this line
has been done by many authors. ' ' On the basis
of their results of high-order calculations of the
elastic-scattering amplitude in massive quantum
electrodynamics (QED),' Gheng and Wu recently
made a number of predictions on the elastic-seat-

tering amplitude, the differential and integrated
elastic cross sections, and the total cross sec-
tion for hadron-hadron scattering at infinite ener-
gy. One may hope that a simple model with y'
coupling mill also give the same qualitative pre-
dictions as @ED; furthermore, the simplicity of
the model allows one to draw more physical con-
sequences. In this Letter we report some predic-
tions of the simple model with a y' coupling for
elastic and inelastic hadron scattering at very
high energies.

Our model is defined as follows: For the elas-
tic-scattering amplitude we first summed the
leading terms in each order of perturbation of
the t-channel straight ladders plus those obtained

by interchange of the Mandelstam variables s and

We then performed the s-channel iteration
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