
VOLUME 25, NUMBER 21 PHYSICAL REVIEW LETTERS 23 NovEMaER 1970

Mass Dispersion Relations in the Light of the Light Cone~
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Operator-product expansions near the light cone are used to study the convergence
and saturation properties of some mass dispersion relations. We develop a general
formalism and apply it to justify partial conservation of axial-vector current and to
correct vector-meson dominance. We specifically treat the E» form factors and the
decays 'Jl ~& (d &p, and (d

In the last few years, a considerable effort has
been devoted to attempting to understand the na-
ture of processes involving the interaction of a
massive photon with hadrons. The Stanford I in-
ear Accelerator Center (SLAC) deep-inelastic
electron-proton scattering experiments' have
strongly suggested that, although many finer de-
tails depend on purely hadron structure, a major
feature of these processes, the so-called "scal-
ing behavior, " is also common to "structureless"
photon-lepton scattering. It is generally believed
that such experiments test the short-distance be-
havior of the hadrons by probing them with mas-
sive photons (acting like an extremely high-reso-
lution microscope). Attempts have been made to
give this idea a quantitative content, and, most
notably, the restrictions implied by local current
algebra have been used by Bjorken to obta, in a,

number of interesting results.
It has also been shown' that, in the SI AC ex-

periment~ and in the recent ColuDIbia-Brook-
haven National Laboratory(BNL) experiment'
measuring massive p, -pair production, the more
intricate behavior near the light cone, rather
than simply at equal times, is relevant for under-
standing the observed results. An operator-prod-
uct expansion near the light cone has been shown

by us to be valid under quite general circum-
stances, including renormalized perturbation the-
ory, ' and has proved to be particularly suited for
treating the general class of processes previous-

A(x)B(0)-E(x'—iexo)g„x ' ~ x""e " (0),

FIG. 1. Kinematics of the three-point function
A(P, q ).

ly mentioned. The purpose of this paper is to
show that such light-cone expansion, together
with the observatIon that the leading light-cone
behavior sets in very quickly, can be used to de-
termine the convergence properties of mass dis-
persion relations and to decide the extent to
wlHch low-mass saturation of these relations ls
relia.ble.

Consider a vertex function with kinematics as
shown in Fig. 1, where the scalar particle (k) is
on shell (k'=I') and p and q (k =p+q) are the
momenta carried by two scalar currents A(x) and
8 (x):

~(p' q') = Jd'« ""&Olr[&(x}&(0)ilk).

It is easy to see that the behavior of A(p', q') in
the limit p'- ~ with v =p'/2v =—[&-(q'-rn )/p ]
fixed (~ included) is determined by the behavior
of &(x)&(0) near (namely, within 1/p'} the light
cone x =0 . Thus' to coIIlPute tlHS llmity we can
use the general light-cone expansion'

where the 0, . . .a "~(0) are local operators. Defining

E' x " x"&ol&... . .„'"'(0)lk) = f(k x)+6(x'),

we obtain

&(q',p')- Jd'xe '~'*E(x'-iex, )f(k.x).
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Thus the general singularity E (z) =& " gives the result

eiTKT
A(P', q') — — (P')" '~' "F,(~),r(r)

F„(~)-=j d3 e"'~' "f(3).

Two interesting special cases are the limit m —1 [so that {q'/p') —0 and the liIIII't is p ~ wltll q
fixed], in which

A(P', q') p.-- (P')" 'F,(1),
q2 fixed

and the limit ~- ~ [so that (q'/P') -1 and the limit is the Bjorken limit Po- ~ with p fixed], in which

A(P', q') I,-= (P.)'" '-f(o).
P' fixed

As expected, the limit (8) is controlled by the first nonvanishing (although perhaps infinite) equal-time
commutator as determined by (2).

In simple perturbation theories, one finds I'=1 (within logs) and f(&)-e'" so that FI(z) has a pole at
Cd = 1 Rnd (7) l3ecoIIIBS IIIBRnlIlgless, tile coI'I'ect l3ellRvlol' l3elllg A —c0118t. We explIcItly assume tlIRt
our F„(~) do not develop such poles. This assumption accounts for the observed rapid decrease of em-
pirical form factors (see below) and the smooth behavior of the structure functions measured at SLAC
and amounts to assuming a composite structure for the hadrons. It is, presumably, the same mecha-
nism which Reggeizes the fixed poles of perturbation theory that eliminates the poles in F„(&u).

%e shall make a second assumption in order to determine the values of r relevant in specific cases.
We RssuIIIB 'tlIRt Rll I'elevRII fleM RIld current operators 11RVB tile 8RIne (cRIIGIllcR1) dimensions 'tlIat tlley
have in the gluon model (triplet quarks coupled to a massive neutral vector meson via the baryon num-
ber current) (ignoring logs). The gluon model thus treated has been very successful in accounting for
many aspects of processes like the ones we are considering, v and this specific assumption gives the
essentially unique singularity structure for electromagnetic currents consistent with the SLAC and
Columbia-BNL experiments. e

Our final assumption will be that asymptotic behavior sets in quite quickly, namely for p'-2 BeV'.
This assumption is strikingly supported by the results of SLAC and Columbia-BNL. Its implications
for our purposes are that (7) becomes ~alid for P'- 2 BeV' and that f(A. ) has support concentrated very
near A, =O. This last statement accounts for the rapid approach of the electroproduction scaling func-
tion to its (constant) asymptotic limit. It means, in particular, that F,(1) is of the order of f(0).

We proceed to apply these ideas to discuss mass dispersion relations. The amplitude A(P', q') is as-
sumed to be analytic in the cut p' plane, with a cut starting at p'=|3. &0. We can, therefore, write the
"finite-mass dispersion relation"

A(p q)=-' 'dp" "'", ' dp"""""
TT ~ p' -p +Z6 2TTZ ~ p' -p +26

where a(pz, q') is the absorptive part (in p') of A(p', q ) and cA is the circular contour ipzi =A. For A
&2 BeV, we thus obtain

(
.

)
1 t' „(P"., ') F,(I) d,. (P")" '
PTER~ P' -P +Z6 27TZ ~ P' —P +ZE

Integrating A. over cA, we get the further useful relation

(10)

0= — dP"a(P", q')+ " . dP"(P")" '.1 F„(1)
7 cf 27D

%e are thus paralleling the "finite-energy sum rule" treatment of four-point functions. The important
fact that A can be as small as 2 BeV' is analogous to the usefulness of the concept of "duality. "

Let us suppose tlIRt tllel e 18 R low-lylIlg pRI'tlcle of IIIR88 /L wltll tile quantum numbers of A(x) 80 tllat

a(P', q') = «(p'-I ')a (q') +a.(p', q') (12)
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Then, (10) and (ll) become (canonical dimensionality implies that x is an integer)

A(p' ') = '(q') 1
i( dp' "(P ' ) 6 F (1)—p +'LE W J~ p' —p +'LE

and

(13)

(14)0 = a~(q') + 1/m f dp "a„(p",q') + 6„,F„(1).

We first apply the above formalism to study the momentum dependence of the off-shell K» form fac-
tors. ' We consider the amplitude

(2) i/~
(

2

D(P', q') = ', f d'x e*' "(0l T[D'(x)u'(O)]lA", u),

where D'= 8"A&' and S'= 8"V&', in terms of the vector and axial-vector currents. The relevant light-
cone expansion is

D'(x)u (0) —(x'-iex, ) 'g x"~ ~ .x ~ 6 ... '"'(0) 0(1/x')
n=j.

(15)

D(q', P') ~- = 6+o(1/p'),
q2 fixed

where &- f d&e' f(&)& '=const. Now, since the sum in (15) starts at n= 1, we have f(y) =~(y) and

g(0) ~e,e,f~. Sinceg(A. ) is assumed to have support near A. =O, we conclude that 5=0(e,e3f~).
Equations (13) and (14) then become

(16)

This follows from the gluon-model results dimD =dimS = 3, dime "'= 2+n (the minimal dimension for
an odd-parity field is three). In particular, 6 "'(0)~e,e,A„(0), where &, (e, ) measures the amount
of SU(2) SU(2) [SU(3)] symmetry breaking. ' We obtain as above

D(o, q') =,g. I(mx'-m. ')f, (q')+q'f-(q')]+ — dp" „'. +O(&.&,), (17)

0™,"i.I (m E'-m. ')f. (q') +q'f -(q')]+ — dp" d (P",q') + O(~,~,)
9m 7f2

where f,(q') are the K„ form factors, d is the absorptive part of D, and the 0(&,&,) terms arise as
above from the O(x ) of each term in (15). Using'

f 2dp d(p')/P' = f dP d(P )/gm

we obtain from (17) and (18)

D(o, q") = 1/(2)' 'I (m~'-m. ')f.(q') +q'f -(q')]+ o(~.~,).

Using finally the low-energy theorem

(18)

D(o, mx ) =
(2)&~2 mz f, ~,

we can justify either strong partial conservation of axial-vector current (PCAC) (e, «e~, $:f /f, -0)—
or weak PCAC (e, «e„$ -1). These are precisely the conclusions of Ref. 8, now made more com-

pelling because of the sma1lness of A.
We can similar1y show how pion poles dominate physical form factors. We obtain asymptotic be-

havior of the form A(P', q2) -a+6/P' with a and b constant so that when we go on shell by taking

jim, (q' 1lP)A(p, q')—= A(p—'), we obtain p'A(p') -0. As in Ref. 8, this leads to the superconvergence
universality result

A(0) = A, (l-m, '/m'),

where gpn„' m' A = 2 BeV . These results support the use made of weak PCAC in Ref. 8.
We next apply similar considerations to study vector-meson dominance (VMD) as applied to the re-

lated processes n'-yy, &o-wy, and &u-3v. We define the ~'-yy amplitude in terms of the v'-y'(k, )
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+y'(k, ) one A(k, k,):
(2/3)A(k„k, ) = e„„„ge"(k,)e"(k,)k, k, aF(k, ', k, ').

The relevant operatoI product expansion is'

&„'(x)&„'(0)-&„„„8{x'-i',) 'x~x & ~ x ~6„,
0

where the omitted terms do not contribute to (21). In the gluon model 6 z&'& (0) ccA &'(0). As above we
obtain'0

1 1 2f,e2
~(k' km') «,2- -

k 2 &x(» k ~ 3(2)'um *
j.

422 fixed

f (0, 0) = {e/y.)A(~ -~y}+A, /m, ',

3&2f, = (em 2/y )A((u-ny)+A„ (25)

where em '/2y (m ') =em '/2y is the on-shell co-y junction and A, and m, represent an average of
the continuum effects so that we expect m '&m, ' ~A =2 BeV'. Equations (24) and (25) give

+(0, o) =(e/y )(I-m '/m, ')A(~ -~y)+2 "f,e'/3m, '. (26)

Note that the first term in (26) is the usual Gell-Mann-Sharp-Wagner (GMSW) term, "but with a cor-
rection factor (1-m '/m, '), and the second term comes from the light-cone behavior. We shall com-
pare th1s pred1ctlon with experiment below.

We call A(k, ') the off-shell cu -my invariant amplitude so that the Feynman amplitude is A(0)e„„
e"(k)e" (k,)k, k, s. We obtain as above [cf. Eq. (20)]

A(0) = g p, (e/2y~)(1-m p'/m, ').
This result coincides with the GMS% model" provided

y (0) = (1-m p'/m, ') 'y .
Augustin et al."have observed that the VlVLD result

I'((u - vy) a
(29)

disagrees with experiment by a factor of 2 if they use their measured value for y~(m, ') in place of
y (0). By choosing m, ' =2, our correction factor (1-m~'/m, ')' in (28) puts (29) in perfect agreement
with experiment. Augustin et al. '2 have also checked in VMD result

I'(ru —
m y} 1 y, 2(0)= const—I'(~'- yy)

Taking I (v - yy) = 7 5 eV and using y~(m~ ), the/ found I (&-&y} = 410 keV, in disagreement with the
experimental value I;„z(~-n'y) = 1.1MeV. Using our result (28) with m, = 2, we obtain I'(cu-vy)
= 800 keV in (30), which is quite an improvement. Using our modified VMD prediction (26) and the
latest value" for I"(m'- yy), we obtain I"(~- vy) = 1.2 MeV, in good agreement with experiment.

We see that the effect. of the continuum is to give a km dependence to the y-vector-meson junction
which is quite appreciabl. The striking fact is that with m, = 2 BeV2, one can account for the dis-
crepancies of the VMD model discussed above. We are presently applying these same methods to
study photoproduction.

We believe that the applications discussed in this note further demonstrate the usefulness of opera-
tor-product expansions near the light cone, Using essentially the same assumptions supported by the
massi. ve photon scattering experiments, we have attempted to justify and extend low-lying saturation
of mass dispersion relations in both the pion and vector-meson channels. The light cone was thus
seen to illuminate the nature of these old physical principles.
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The relationship between the dimensionality of the cosmic-ray propagation function
and the statistical distribution of anisotropies is demonstrated and an argument is pre-
sented in favor of "essentially" one-dimensional propagation. This implies that a fluctu-
ation explanation of lorv observed anisotropy cannot be ruled out as has been stated by
previous authors.

In a recent Letter Ramaty, Reames, and Lin-
genfelter' report results of a Monte Carlo calcu-
lation in which the injection of cosmic rays into
the galaxy is considered to be a sequence of ran-
dom discrete events in space-time. In their Let-
ter they state that their results are in conflict
with a suggestion' of the present author that
small values of the cosmic-ray anisotropy could
result from the statistical nature of the injection
mechanism. This remark is based on the result'
that in the distribution of anisotropies small val-
ues are suppressed and the maximum-likelihood
value is of the order of the rms value. Ramaty,
Reames, and Lingenfelter also state' that a fluc-
tuation origin of small anisotropy is only possi-
ble in the case of "strictly one-dimensional"

propagation of cosmic rays in the galaxy. This
is demonstrated' by the result that when two of
the dimensions were suppressed in the Monte
Carlo calculation the suppression of small values
was not observed and a distribution was obtained
that was flat down to zero.

It is the purpose of this note to point out the
reason for this dependence on dimensionality, to
demonstrate that small values of anisotropy are
not improbable if the propagation is "essentially"
one dimensional, and to argue that this, in fact,
is the case in our galaxy. In the following we
shall consider the bulk cosmic-ray flux density
J rather than the anisotropy 5 since the former
has simpler statistical properties and the latter
quantity is simply related to it by 5 ~

~ J~/p,
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