Effect of ϵ ($J^P = 0^+$, I = 0) Resonance on $e^+e^- \rightarrow \pi^+\pi^-\gamma^+$

A. Q. Sarker

Department of Physics and Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97405 (Received 8 September 1970)

The product of the coupling constants for $\epsilon \rightarrow \pi \pi$ and $\epsilon \rightarrow 2\gamma$ is estimated from a superconvergent sum rule obtained from the helicity-flip amplitude of pion-Compton scattering. It is then used to show that the contribution of ϵ (even C) to the process $e^+e^- \rightarrow \pi^+\pi^-\gamma$ (to order α^3) is about two orders of magnitude larger than that when the pions are in odd-C states.

Recently it has been suggested¹ that the reaction (to order α^3)

$$e^{+}+e^{-} \rightarrow \pi^{+}+\pi^{-}+\gamma \tag{1}$$

can be used to study the di-pion system in states of even charge conjugation. In particular, it would provide reliable information about the existence of the ϵ ($J^P = 0^+$, I = 0) meson resonance at 760 MeV. The diagram contributing to this process is shown in Fig. 1(a). However, to the same order α^3 , the diagrams of Fig. 1(b) would also contribute where the two pions have C odd. The differential cross section $d\sigma_{+-}$ for $e^+e^ -\pi^+\pi^-\gamma$ is proportional to $|A+B|^2$. Under the exchange of two pions B changes sign while Adoes not; so $d\sigma_{+-} + d\sigma_{-+}$ is $|A|^2 + |B|^2$. The magnitude of B is known from the knowledge of the pion form factors. Thus from the measured cross sections $d\sigma_{+} + d\sigma_{-}$ the amplitude $|A|^2$ can be isolated, and if ϵ exists it would appear as a resonance peak in A. Until such an experiment is performed, it is worthwhile to give a theoretical estimate of the contribution of ϵ to (1). This requires a knowledge of the coupling $\epsilon \rightarrow 2\gamma$, a reliable estimate of which has not been given previously.

In this Letter we first obtain a superconvergent sum rule from the fixed-s dispersion relation for the helicity-flip amplitude of pion Compton scattering. Then saturating the sum rule by appropriate meson resonances we estimate the product of the coupling constants for $\epsilon - \pi \pi$ and $\epsilon - 2\gamma$. This, along with the assumption of vector-

FIG. 1. Contributing diagrams to the process $e^+e^ \rightarrow \pi^+\pi^-\gamma$ (to order e^3).

meson dominance of the electromagnetic currents, is then used to calculate the contribution of ϵ to (1) when the colliding-beam energy is at the φ -meson resonance, for comparison with the contribution of the diagrams in Fig. 1(b). It is found that the former is about 10² times larger than the latter (in cross section) and is also peaked [depending on the width $\Gamma(\epsilon \rightarrow \pi\pi)$]. Thus a measurement of $d\sigma_{+-} + d\sigma_{-+}$ of (1) would unambiguously settle the question of the existence of ϵ and determine the width of $\epsilon \rightarrow 2\pi$.

We consider the pion Compton scattering $\pi^{+}(q)$ + $\gamma(k) \rightarrow \pi^{+}(q') + \gamma(k')$, the helicities of the initial and final photons being denoted by λ and λ' . The Lorentz-invariant helicity amplitudes are denoted by $M_{\lambda, \lambda'}(s, t, u)$.² It has been shown³ that the amplitude $M_{1, -1}/t$ is free of both s and t kinematic singularities and, further, sufficiently well behaved at large t so that one can write a fixed-s unsubtracted dispersion relation:

$$\frac{M_{1,-1}(s,t)}{t} = -\frac{2e^2m_{\pi}^2}{(m_{\pi}^2 - s)(m_{\pi}^2 - u)} + \frac{1}{\pi}\int \frac{dt'}{t'-t} \frac{\mathrm{Im}M_{1,-1}(s,t')}{t'} + \frac{1}{\pi}\int \frac{du'}{u'-u} \frac{\mathrm{Im}M_{1,-1}(s,u')}{2m_{\pi}^2 - s - u'},\tag{2}$$

where the first term on the right-hand side of (2) is the one-pion Born contribution. In a purely Reggeized world, the large-t behavior of $M_{1, -1}(s, t)/t$ is given by $t^{\alpha(s)-1}$, where the trajectory $\alpha(s)$ is one for which $\alpha(m_{\pi}^{2}) = 0$. Since the slope of α is positive, $\alpha(s) < 0$ for $s < m_{\pi}^{2}$, and $M_{1, -1}-/t$ would decrease faster than t^{-1} for large t. Thus, from (2) we obtain a superconvergent sum rule⁴

$$-2e^{2} - \frac{1}{\pi} \int_{4m\pi^{2}}^{\infty} dt' \frac{\mathrm{Im}M_{1,-1}(s=0,t')}{t'} + \frac{1}{\pi} \int_{4m\pi^{2}}^{\infty} du' \frac{\mathrm{Im}M_{1,-1}(s=0,u')}{2m\pi^{2} - u'} = 0,$$
(3)

1527

(6)

where we have put s = 0 in (3).

We saturate the sum rules (3) with ϵ and f meson resonances in the t channel and A_1 and A_2 mesons in the u channel. We define

$$(2\pi)^{3}(4q_{0}q_{0}')^{1/2}\langle \pi(q), \pi(-q') | \epsilon(p) \rangle = g_{\epsilon\pi\pi\pi},$$
(4)

$$(2\pi)^{3}(4k_{0}k_{0}')^{1/2}\langle\gamma(-k),\gamma(k')|\epsilon(p)\rangle = e^{2}g_{\epsilon_{2}\gamma}[k\cdot k'\delta_{\nu\nu},-k_{\nu},k_{\nu}]\epsilon_{\nu}(-k)\epsilon_{\nu},\langle k\rangle,$$

$$(5)$$

$$(2\pi)^{3}(4q_{0}q_{0})^{1/2}\langle \pi(q), \pi(-q) | f(p) \rangle = g_{f\pi\pi}Q_{\tau}Q_{\tau}, \epsilon_{\tau\tau}, (p),$$

$$-k \cdot k' (\delta_{\nu \tau} k_{\tau}, k_{\nu}, -\delta_{\nu}, k_{\nu}, k_{\nu}, k_{\nu}, k_{\tau}, k_{\nu}, k_{\tau}, k_{\tau}, k_{\nu}, k_{\tau}, k_{\nu}, k_{\tau}, k_{\tau}, k_{\nu}, k_{\tau}, k_{$$

$$(2\pi)^{3}(4q_{0}k_{0}')^{1/2}\langle \pi(q), \gamma(-k') | A_{1}(p) \rangle = eg_{A_{1}\pi\gamma}[q \cdot k'\delta_{\nu'\alpha} - q_{\nu'}k_{\alpha'}] \epsilon_{\nu'}(-k)\epsilon_{\alpha}^{A_{1}}(p),$$
(8)

$$(2\pi)^{3}(4q_{0}k_{0}')^{1/2}\langle \pi(q), \gamma(-k') | A_{2}(p) \rangle = eg_{A_{2}\pi\gamma^{\frac{1}{2}}} \epsilon_{\nu' \alpha \beta \mu} q_{\alpha} k_{\beta'} \epsilon_{\pi\tau}(p)(q+k')_{\tau},$$
(9)

where $\epsilon_{\alpha}{}^{A_1}$ and $\epsilon_{\tau\tau}{}^{A_2}$ are the polarization vector and tensor for A_1 and A_2 .

The contributions of ϵ , f, A_1 , and A_2 meson resonances to Im $M_{1,-1}(s, t)$ are then calculated to be

$$Im M_{1, -1}^{(\epsilon)}(s, t) = \frac{1}{2} \pi e^2 t g_{\epsilon \pi \pi} g_{\epsilon 2 \gamma} \delta(t - m_{\epsilon}^2),$$
(10)

$$\operatorname{Im}M_{1,-1}^{(f)}(s,t) = \frac{1}{8}\pi e^{2}tg_{f\pi\pi}\tilde{g}_{f2\gamma}[(s-m_{\pi}^{2})^{2} + t(s-m_{\pi}^{2}) + \frac{1}{3}t(\frac{1}{2}t+m_{\pi}^{2})]\delta(t-m_{f}^{2}), \tag{11}$$

$$\operatorname{Im}M_{1,-1}^{(A_1)}(s,u) = -\pi \frac{1}{4}e^2 t g_{A_1\pi\gamma}^2 u \delta(u - m_{A_1}^2), \tag{12}$$

$$\operatorname{Im}M_{1,-1}^{(A_2)}(s,u) = -\pi_{32}^{1}e^{2}tg_{A_2\pi\gamma}^{2}\left[(2m_{\pi}^{2}-2s-u)u+m_{\pi}^{2}(s+u-2m_{\pi}^{2})\right]\delta(u-m_{A_2}^{2}),$$
(13)

where $\tilde{g}_{f_2\gamma} = g_{f_2\gamma} - g_{f_2\gamma}'$. Using (10)-(13) in (3), we obtain

$$-2 - \frac{1}{2}g_{\epsilon\pi\pi}g_{\epsilon_{2}\gamma} - \frac{1}{48}g_{f\pi\pi}\tilde{g}_{f_{2}\gamma}m_{f}^{4} - \frac{1}{4}g_{A_{1}\pi\gamma}^{2}m_{A_{1}}^{2} + \frac{1}{32}g_{A_{2}\pi\gamma}^{2}m_{A_{2}}^{4} = 0,$$
(14)

where we have neglected terms of the order of m_{π}^2 compared with m_f^2 , etc. From the Pagels-Harari⁵ and Singh⁶ sum rules, we obtain

$$\frac{1}{3}g_{A_2\pi\gamma}^2 = (0.462 \pm 0.069)/\text{GeV}^4,$$

$$g_{A_1\pi\gamma}^2 = (0.04 \pm 1.14)/\text{GeV}^2,$$
(15)

where we have used the experimental information $\Gamma(\omega \rightarrow \pi \gamma) = 1.19 \pm 0.33$ MeV.⁷ From $\Gamma(f \rightarrow 2\pi)$ = 151 ± 25 MeV and $\Gamma(f - 2\pi^+ 2\pi^-) \leq 6$ MeV, ⁷ along with vector dominance, we get

$$|g_{f\pi\pi}| = (1.82 \pm 0.14) \times 10^{1}/\text{GeV},$$
 (16)

$$|\tilde{g}_{f_{2}\gamma}| \le 0.845/\text{GeV}^3.$$
 (17)

Now using (16), (17), and (15) in (14), we obtain

 $g_{\epsilon \pi \pi} g_{\epsilon_{2\gamma}} \leq -2.056 \pm 0.60$ (dimensionless). (18)

We should point out that the superconvergent relation predicts $g_{\epsilon \pi \pi} g_{\epsilon_2 \gamma}$ to be a constant, while from perturbation theory one obtains $g_{\epsilon_{2}\gamma}$ to be proportional⁸ to $g_{\epsilon \pi \pi}$.

We are now in a position to calculate the con-

tribution of ϵ to the process (1). As already pointed out by Creutz and Einhorn,¹ the contribution of Fig. 2(a) can be enhanced compared with that of the diagrams in Fig. 1(b) by setting the colliding-beam energy to the φ -meson resonance (1020 MeV). To minimize the contributions of external bremsstrahlung from pions one has to observe a hard photon at right angles to the beam direction (in the e^+e^- rest system) and the pions coming out symmetrically about the photon direction. In this configuration we write

FIG. 2. ϵ - and φ -meson dominance of Fig. 1(a).

(19)

the contribution of the diagram of Fig. 2 as

$$|A|^{2} = \frac{e^{6}}{8} \frac{g_{\epsilon\pi\pi}^{2} g_{\epsilon\varphi\varphi}^{2}}{(t-m_{\epsilon}^{2})^{2} + m_{\epsilon}^{2} \Gamma_{\epsilon}^{2}} \left(\frac{1}{g_{\varphi}^{2}}\right)^{2} \frac{m_{\varphi}^{2}}{\Gamma_{\varphi}^{2}} \frac{(m_{\varphi}^{2}-t)^{2}}{m_{\varphi}^{2}}$$

where we have set the beam energy to m_{φ}^{2} .

From (18), and the assumption of vector dominance, we have

$$\frac{g_{\epsilon\pi\pi}g_{\epsilon\varphi\varphi}}{g_{\varphi}^{2}} \gtrsim \frac{2.056}{3}\cos^{2}\theta_{\nu}, \qquad (20)$$

where θ_v is the $\omega - \varphi$ mixing angle and is given by $\cos \theta_v = 0.768$ from the mass formula. Using (20) in (19) and taking $t = m_e^{-2}$, we obtain

$$|A|^{2} \gtrsim \frac{0.28}{8} \left(\frac{m_{\varphi}}{\Gamma_{\varphi}}\right)^{2} \left(\frac{m_{\varphi}}{m_{\epsilon}}\right)^{2} \left(1 - \frac{m_{\epsilon}^{2}}{m_{\varphi}^{2}}\right)^{2} \frac{1}{\Gamma_{\epsilon}^{2}}, \quad (21)$$

which is an order of magnitude larger than the corresponding expression given by Creutz and Einhorn.¹

The spin-average contribution from the diagrams of Fig. 1(b) is given by Creutz and Einhorn and is equal to (approximating the pion form factor by ρ meson resonance)

$$|B|^{2} \simeq \frac{e^{6} m_{\rho}^{4}}{(m_{\rho}^{2} - m_{\epsilon}^{2})^{2} + m_{\rho}^{2} \Gamma_{\rho}^{2}} \left(\frac{2}{m_{\epsilon}^{2}}\right)$$
(22)

$$=2e^{6}/\Gamma_{\rho}^{2},$$
 (23)

where we have used $m_{\epsilon} = m_{\rho}$ in (22). Using $\Gamma_{\varphi} = 3.9$ MeV, $\Gamma_{\rho} = 125$ MeV,⁷ and $\Gamma_{\epsilon} = 300$ MeV in (21) and (23), we get

$$|A|^2 / |B|^2 \gtrsim 6.96 \times 10^1.$$
 (24)

Thus, $|A|^2$ is about two orders larger than $|B|^2$. The reason for the relative enhancement of the term $|A|^2$ in the present paper over that of Creutz and Einhorn¹ is our estimate $g_{\epsilon\pi\pi}^2 g_{\epsilon\varphi\varphi}^2 / g_{\varphi}^4$ ≥ 0.163 [Eq. (20)], which is about $2\frac{1}{2}$ times the

value assumed by these authors. We also observe that the expression (21) is inversely proprotional to the width $\Gamma(\epsilon \rightarrow 2\pi)$, while the corresponding expression given by Creutz and Einhorn is independent of $\Gamma(\epsilon \rightarrow 2\pi)$. Moreover, expression (24) is peaked between $0.6m^2$ and $0.9m^2$ in t depending upon the width $\Gamma(\epsilon \rightarrow 2\pi)$, 500-300 MeV. Thus, a measurement of $d\sigma_{+-} + d\sigma_{-+}$ of (1) would determine the width $\Gamma(\epsilon \rightarrow 2\pi)$ unambiguously.

Details of this work and also that of kaon Compton scattering to find the effect of δ meson resonance on $e^+e^- \rightarrow K\overline{K}\gamma$ and $e^+e^- \rightarrow \pi^0\eta^0\gamma$ will be published elsewhere.

[†]Work supported in part by the U. S. Atomic Energy Commission under Contract No. AT (45-1) 2041.

¹M. J. Creutz and M. B. Einhorn, Phys. Rev. Lett. ²⁴, 341 (1970), and Phys. Rev. D <u>1</u>, 2537 (1970). ²The kinematic variables are $s = -(q+k)^2$, $t = -(k-k')^2$,

The kinematic variables are $s = -(q+k)^2$, $t = -(k-k')^2$, and $u = -(q-k')^2$. We also define $Q = \frac{1}{2}(q+q')$, $K = \frac{1}{2}(k+k')$, and $Q \cdot k = -\nu = \frac{1}{4}(s-u)$.

³H. D. I. Abarbanel and M. L. Goldberger, Phys. Rev. <u>165</u>, 1594 (1968).

⁴The sum rule (3) was first obtained by Abarbanel and Goldberger, although no application of it was made by them.

⁵H. Pagels, Phys. Rev. Lett. <u>18</u>, 316 (1967); H. Harari, Phys. Rev. Lett. <u>18</u>, 319 (1967).

⁶V. Singh, Phys. Rev. Lett. <u>19</u>, 730 (1967).

⁷A. Barbaro-Galtieri *et al.*, Rev. Mod. Phys. <u>42</u>, 82 (1970).

⁸P. C. DeCelles and J. F. Goehl, Phys. Rev. <u>184</u>,

1617 (1969); A. Q. Sarker, Phys. Rev. (to be published).