Effect of ϵ ($J^P = 0^+, I = 0$) Resonance on $e^+e^- \rightarrow \pi^+ \pi^- \gamma^+$

A. Q. Sarker

Department of Physics and Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97405 (Received 8 September 1970)

The product of the coupling constants for $\epsilon \rightarrow \pi \pi$ and $\epsilon \rightarrow 2\gamma$ is estimated from a superconvergent sum rule obtained from the helicity-flip amplitude of pion-Compton scattering. It is then used to show that the contribution of ϵ (even C) to the process $e^+e^- \rightarrow \pi^+ \pi^- \gamma$ (to order α^3) is about two orders of magnitude larger than that when the pions are in odd-C states.

Recently it has been suggested' that the reaction (to order α^3)

$$
e^+ + e^- \rightarrow \pi^+ + \pi^- + \gamma \tag{1}
$$

can be used to study the di-pion system in states of even charge conjugation. In particular, it would provide reliable information about the existence of the ϵ ($J^P=0^+, I=0$) meson resonance at 760 MeV. The diagram contributing to this process is shown in Fig. $1(a)$. However, to the same order α^3 , the diagrams of Fig. 1(b) would also contribute where the two pions have C odd. The differential cross section $d\sigma_{+}$, for $e^+e^ -\pi^{+}\pi^{-}\gamma$ is proportional to $|A+B|^2$. Under the exchange of two pions B changes sign while A does not; so $d\sigma_{++}$ + $d\sigma_{-+}$ is $|A|^2$ + $|B|^2$. The magnitude of B is known from the knowledge of the pion form factors. Thus from the measured cross sections $d\sigma_{+}$ + $d\sigma_{+}$ the amplitude $|A|^2$ can be isolated, and if ϵ exists it would appear as a resonance peak in A . Until such an experiment is performed, it is worthwhile to give a theoretical estimate of the contribution of ϵ to (1). This requires a knowledge of the coupling $\epsilon \rightarrow 2\gamma$, a reliable estimate of which has not been given previously.

In this Letter we first obtain a superconvergent sum rule from the fixed-s dispersion relation for the helicity-flip amplitude of pion Compton scattering. Then saturating the sum rule by appropriate meson resonances we estimate the product of the coupling constants for $\epsilon \rightarrow \pi \pi$ and ϵ -2 γ . This, along with the assumption of vector-

FIG. 1. Contributing diagrams to the process $e^+e^ -\pi^+\pi^-\gamma$ (to order e^3).

meson dominance of the electromagnetic currents, is then used to calculate the contribution of ϵ to (1) when the colliding-beam energy is at the φ -meson resonance, for comparison with the contribution of the diagrams in Fig. 1(b). It is found that the former is about $10²$ times larger than the latter (in cross section) and is also peaked [depending on the width $\Gamma(\epsilon + \pi \pi)$]. Thus a measurement of $d\sigma_{++} + d\sigma_{-+}$ of (1) would unambiguously settle the question of the existence of ϵ and determine the width of $\epsilon \rightarrow 2\pi$.

We consider the pion Compton scattering $\pi^+(q)$ $+\gamma(k) - \pi^+(q') + \gamma(k')$, the helicities of the initial and final photons being denoted by λ and λ' . The Lorentz-invariant helicity amplitudes are denoted by $M_{\lambda, \lambda'}(s, t, u)$.² It has been shown³ that the amplitude $M_{\mathbf{1},\;\mathbf{-1}}/t$ is free of both s and t kinemat ic singularities and, further, sufficiently well behaved at large t so that one can write a fixed-s unsubtr acted dispersion relation:

$$
\frac{M_{1,-1}(s,t)}{t} = -\frac{2e^2m_\pi^2}{(m_\pi^2-s)(m_\pi^2-u)} + \frac{1}{\pi}\int \frac{dt'}{t'-t} \frac{\text{Im}M_{1,-1}(s,t')}{t'} + \frac{1}{\pi}\int \frac{du'}{u'-u} \frac{\text{Im}M_{1,-1}(s,u')}{2m_\pi^2-s-u'},
$$
(2)

where the first term on the right-hand side of (2) is the one-pion Born contribution. In a purely Reg-'geized world, the large-t behavior of $M_{1,-1}(s,t)/t$ is given by $t^{\alpha(s)-1}$, where the trajectory $\alpha(s)$ is one for which $\alpha(m_n^2) = 0$. Since the slope of α is positive, $\alpha(s) < 0$ for $s < m_n^2$, and $M_{1, -1}$ -/t would decrease faster than t^{-1} for large t. Thus, from (2) we obtain a superconvergent sum rule $\alpha(m_{\pi}^2) = 0$. Since the slope of α is positive, $\alpha(s) < 0$ for t^{-1} for large t. Thus, from (2) we obtain a superconv
 $\frac{1}{\pi} \int_{4m\pi^2}^{\infty} dt' \frac{\text{Im}M_{1,-1}(s=0, t')}{t'} + \frac{1}{\pi} \int_{4m\pi^2}^{\infty} du' \frac{\text{Im}M_{1,-1}(s=0, u')}{2$

$$
-2e^{2}-\frac{1}{\pi}\int_{4m\pi^{2}}^{\infty}dt'\frac{\text{Im}M_{k-1}(s=0,t')}{t'}+\frac{1}{\pi}\int_{4m\pi^{2}}^{\infty}du'\frac{\text{Im}M_{1,-1}(s=0,u')}{2m\pi^{2}-u'}=0,
$$
\n(3)

(6)

where we have put $s = 0$ in (3).

We saturate the sum rules (3) with ϵ and f meson resonances in the t channel and A_1 and A_2 mesons in the u channel. We define

The *u* channel. We define
\n
$$
(2\pi)^3 (4q_0 q_0')^{1/2} \langle \pi(q), \pi(-q') | \epsilon(p) \rangle = g_{\epsilon\pi\pi},
$$
\n(4)

$$
(2\pi)^{3}(4k_{o}k_{o})^{1/2}\langle\gamma(-k),\gamma(k')|\epsilon(p)\rangle=e^{2}g_{\epsilon_{2}\gamma}[k\cdot k'\delta_{\nu\,\nu}\cdot-k_{\nu}\cdot k_{\nu}]\epsilon_{\nu}(-k)\epsilon_{\nu}\cdot(k), \qquad (5)
$$

$$
(2\pi)^3(4q_0q_0)^{1/2}\langle \pi(q),\pi(-q)\,|f(p)\rangle = g_{f\pi\pi}Q_{\tau}Q_{\tau'}\epsilon_{\tau\tau'}(p),
$$

 $(2\pi)^3(4k_0k_0')^{1/2}\langle \gamma(-k),\gamma(k)\ket{f(p)}=e^2\frac{1}{8f_2\gamma}[k\cdot k'\delta_{\nu\,\nu}\cdot-k_{\,\nu}\,k_{\,\nu}\cdot\frac{1}{2}K_{\,\tau}\cdot+g_{f2\,\gamma}\cdot\frac{[(k\cdot k\cdot)^2\delta_{\nu\,\tau}\delta_{\nu}\cdot\frac{1}{2}K_{\,\tau}\cdot\frac{1}{2}K_{\,\tau}\cdot\frac{1}{2}K_{\,\tau}\cdot\frac{1}{2}K_{\,\tau}\cdot\frac{1}{2}K_{\,\tau}\cdot\frac{1}{2}K_{\,\tau}\cdot\frac{1}{2$

$$
-k \cdot k' (\delta_{v \tau} k_{\tau'} k_{v'} - \delta_{v' \tau} k_{v'} k_{\tau}) + k_{v'} k_{\tau} k_{\tau'} k_{v'}]
$$

\$\times \epsilon_{v}(-k) \epsilon_{v'}(k) \epsilon_{\tau \tau'}(p)\$, \t(7)\$

$$
(2\pi)^{3}(4q_{0}k_{0})^{1/2}\langle\pi(q),\gamma(-k')|A_{1}(p)\rangle = e_{\mathcal{S}_{A_{1}\pi\gamma}}[q\cdot k'\delta_{\nu'\alpha}-q_{\nu}k_{\alpha'}]\epsilon_{\nu'}(-k)\epsilon_{\alpha}^{A_{1}}(p),
$$
\n(8)

$$
(2\pi)^{3}(4q_{0}k_{0})^{1/2}\langle\pi(q),\gamma(-k')|A_{2}(p)\rangle = e^{c^{2}}A_{1}\pi\gamma^{\frac{1}{2}}\epsilon_{\nu'\alpha\beta\mu}q_{\alpha}k_{\beta'}\epsilon_{\pi\tau}(p)(q+k')_{\tau},
$$
\n(9)

where $\epsilon_{\alpha}^{\ A_1}$ and $\epsilon_{\tau\tau'}^{\ A_2}$ are the polarization vector and tensor for A_1 and A_2 .

The contributions of ϵ , f, A_1 , and A_2 meson resonances to ImM_{1, -1}(s, t) are then calculated to be

$$
\text{Im}M_{1,-1}^{(\epsilon)}(s,t) = \frac{1}{2}\pi e^2 t g_{\epsilon\pi\pi} g_{\epsilon\gamma} \delta(t - m_{\epsilon}^2),\tag{10}
$$

Im
$$
M_{1, -1}
$$
^(f)(s, t) = $\frac{1}{8}\pi e^2 t g_{f\pi\pi} \tilde{g}_{f2\gamma} [(s - m_{\pi}^2)^2 + t(s - m_{\pi}^2) + \frac{1}{3}t(\frac{1}{2}t + m_{\pi}^2)] \delta(t - m_f^2)$, (11)

$$
\text{Im}M_{1,-1}^{(A_1)}(s,u) = -\pi \frac{1}{4}e^2 t g_{A_1 \pi \gamma}^2 u \delta(u - m_{A_1}^2), \tag{12}
$$

$$
\text{Im}M_{1,-1}^{(A_2)}(s,u) = -\pi \frac{1}{32} e^2 t g_{A_2 \pi \gamma}^2 \left[(2m_\pi^2 - 2s - u)u + m_\pi^2 (s + u - 2m_\pi^2) \right] \delta(u - m_{A_2}^2),\tag{13}
$$

where $\tilde{g}_{f2\gamma}$ = $g_{f2\gamma}$ – $g_{f2\gamma^{\prime}}$.

Using (10) - (13) in (3) , we obtain

$$
-2 - \frac{1}{2}g_{\epsilon\pi\pi}g_{\epsilon\pi\gamma} - \frac{1}{48}g_{\epsilon\pi\pi}\tilde{g}_{\epsilon\gamma}m_{\epsilon}^{4} - \frac{1}{4}g_{A_{1}\pi\gamma}^{2}m_{A_{1}}^{2} + \frac{1}{32}g_{A_{2}\pi\gamma}^{2}m_{A_{2}}^{4} = 0,
$$
\n(14)

!

where we have neglected terms of the order of m_π^2 compared with m_f^2 , etc. From the Pagels-Harari⁵ and Singh⁶ sum rules, we obtain

$$
\frac{1}{8}g_{A_2\pi\gamma}^2 = (0.462 \pm 0.069)/\text{GeV}^4,
$$

\n
$$
g_{A_1\pi\gamma}^2 = (0.04 \pm 1.14)/\text{GeV}^2,
$$
\n(15)

where we have used the experimental information $\Gamma(\omega + \pi \gamma) = 1.19 \pm 0.33 \text{ MeV}$. From $\Gamma(f+2\pi)$ $=151\pm 25$ MeV and $\Gamma(f-2\pi^+2\pi^-)\leq 6$ MeV,⁷ along

with vector dominance, we get
\n
$$
|g_{f\pi\pi}| = (1.82 \pm 0.14) \times 10^1/\text{GeV},
$$
\n(16)

$$
|\tilde{g}_{f2\gamma}| \leq 0.845/\text{GeV}^3. \tag{17}
$$

Now using (16), (17), and (15) in (14), we obtain

 $g_{\epsilon\pi\pi}g_{\epsilon2\gamma} \leq -2.056 \pm 0.60$ (dimensionless). (18)

We should point out that the superconvergent relation predicts $g_{\epsilon\pi\pi}g_{\epsilon 2\gamma}$ to be a constant, while from perturbation theory one obtains $g_{\epsilon_{2}y}$ to be proportional⁸ to $g_{\epsilon \pi \pi}$.

We are now in a position to calculate the con- FIG. 2. ϵ - and φ -meson dominance of Fig. 1(a).

tribution of ϵ to the process (1). As already pointed out by Creutz and Einhorn,¹ the contribution of Fig. 2(a) can be enhanced compared with that of the diagrams in Fig. 1(b) by setting the colliding-beam energy to the φ -meson resonance (1020 MeV). To minimize the contributions of external bremsstrahlung from pions one has to observe a hard photon at right angles to the beam direction (in the e^+e^- rest system) and the pions coming out symmetrically about the photon direction. In this configuration we write

the contribution of the diagram of Fig. 2 as

$$
|A|^2 = \frac{e^6}{8} \frac{g_{\epsilon \pi \pi}^2 g_{\epsilon \varphi \varphi}^2}{(t - m_{\epsilon}^2)^2 + m_{\epsilon}^2 \Gamma_{\epsilon}^2} \left(\frac{1}{g_{\varphi}^2}\right)^2 \frac{m_{\varphi}^2}{\Gamma_{\varphi}^2} \frac{(m_{\varphi}^2 - t)^2}{m_{\varphi}^2}
$$

where we have set the beam energy to m_{φ}^2 .

From (18), and the assumption of vector dominance, we have

$$
\frac{\mathcal{S}\epsilon\pi\pi\mathcal{S}\epsilon\varphi\varphi}{\mathcal{S}\varphi^2} \gtrsim \frac{2.056}{3}\cos^2\theta_v,\tag{20}
$$

where θ_v is the $\omega-\varphi$ mixing angle and is given by $\cos\theta_y = 0.768$ from the mass formula. Using (20) in (19) and taking $t = m_e^2$, we obtain

$$
|A|^2 \geq \frac{0.28}{8} \left(\frac{m_\varphi}{\Gamma_\varphi}\right)^2 \left(\frac{m_\varphi}{m_\epsilon}\right)^2 \left(1 - \frac{m_\epsilon^2}{m_\varphi^2}\right)^2 \frac{1}{\Gamma_\epsilon^2},\qquad(21)
$$

which is an order of magnitude larger than the corresponding expression given by Creutz and Einhorn.¹

The spin-average contribution from the diagrams of Fig. 1(b) is given by Creutz and Einhorn and is equal to (approximating the pion form factor by ρ meson resonance)

$$
|B|^2 \simeq \frac{e^6 m_\rho^4}{(m_\rho^2 - m_\epsilon^2)^2 + m_\rho^2 \Gamma_\rho^2} \left(\frac{2}{m_\epsilon^2}\right) \tag{22}
$$

$$
=2e^{\theta}/\Gamma_{\rho}^{2},\qquad(23)
$$

where we have used $m_{\epsilon} = m_{\rho}$ in (22). Using Γ_{φ} =3.9 MeV, Γ_{ρ} = 125 MeV,⁷ and Γ_{ϵ} = 300 MeV in (21) and (23), we get

$$
|A|^2/|B|^2 \geq 6.96 \times 10^1. \tag{24}
$$

Thus, $|A|^2$ is about two orders larger than $|B|^2$. The reason for the relative enhancement of the term $|A|^2$ in the present paper over that of Creutz and Einhorn¹ is our estimate $g_{\epsilon \pi \pi}^2 g_{\epsilon \varphi \varphi}^2/g_{\varphi}^4$

 ≥ 0.163 [Eq. (20)], which is about $2\frac{1}{2}$ times the value assumed by these authors. We also observe that the expression (21) is inversely proprotional to the width $\Gamma(\epsilon + 2\pi)$, while the corresponding expression given by Creutz and Einhorn is independent of $\Gamma(\epsilon + 2\pi)$. Moreover, expression (24) is peaked between 0.6 m^2 and 0.9 m^2 in t depending upon the width $\Gamma(\epsilon + 2\pi)$, 500-300 MeV. Thus, a measurement of $d\sigma_{+-} + d\sigma_{-+}$ of (1) would

determine the width $\Gamma(\epsilon + 2\pi)$ unambiguously. Details of this work and also that of kaon Compton scattering to find the effect of δ meson resonance on e^+e^- - $K\overline{K}\gamma$ and e^+e^- - $\pi^0\eta^0\gamma$ will be published elsewhere.

/Work supported in part by the U. S. Atomic Energy Commission under Contract No. AT(45-1) 2041.

¹M. J. Creutz and M. B. Einhorn, Phys. Rev. Lett. $24, 341$ (1970), and Phys. Rev. D 1, 2537 (1970).

The kinematic variables are $s = -(q+k)^2$, $t = -(k-k')^2$ and $u = -(q-k')^2$. We also define $Q = \frac{1}{2}(q+q')$, $K = \frac{1}{2}(k)$ +k'), and $Q \cdot k = -\nu = \frac{1}{4}(s-u)$.

 3 H. D. I. Abarbanel and M. L. Goldberger, Phys. Rev. 165, 1594 (1968).

⁴The sum rule (3) was first obtained by Abarbanel and Goldberger, although no application of it was made by them,

 5 H. Pagels, Phys. Rev. Lett. 18, 316 (1967); H. Harari, Phys. Rev. Lett. 18, 319 (1967).

 $^{6}V.$ Singh, Phys. Rev. Lett. 19, 730 (1967).

⁷A. Barbaro-Galtieri et al., Rev. Mod. Phys. $42, 82$ (1970).

 ${}^{8}P$. C. DeCelles and J. F. Goehl, Phys. Rev. 184,

1617 (1969); A. Q. Sarker, Phys. Rev. (to be published).

$$
(19)
$$