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It is shown rigorously that, for systems with non-negative interactions and integrable
Mayer f bonds (e.g. , hard spheres), distribution functions and the thermodynamic ratio
p/z exist in the limit V—~, and are analytic functions of the activity z, for z& 1/f in the
right-hand half-plane, with f the absolute value of the integral of the f bond. Heuristic
arguments then indicate that these functions are continuous in z for all z & ~. This would
mean that no Ehrenfest phase transitions are possible for such systems.

The problem of bounds for thermodynamic and distribution functions and the existence of thermo-
dynamic limits has aroused considerable interest in recent years. ' While the problem has been treat-
ed successfully for simple thermodynamic functions such as pressure or the thermodynamic ratio
p/z (with z the activity and p the number density), ' existence of limits for distribution functions has
not been proven even at low activities. On the other hand, the question of the thermodynamic signifi-
cance of singularities obtained from approximate theories for non-negative interactions, and of dis-
continuities observed in computer calculations, 4 is still unresolved.

In this note, we report the following rigorous results for systems with non-negative interactions:
(I) For z real and non-negative, the thermodynamic limits of distribution functions and of the thermo-
dynamic ratio (if they exist) are bounded above and below by the limits of two sequences, monotone
decreasing and monotone increasing, respectively. The members of these sequences can be calculat-
ed successively in a straightforward manner, thus providing successively better and better approxima-
tions to these functions. (II) For z complex in a domain D* bounded on the right by the semicircle
z & 1/f (with f the absolute value of the integral of the Mayer f bond), and on the left by the imaginary
axis and the semicircle z & 1/ef (the Groeneveld lower bound for radii of convergence of cluster ex-
pansions'), both bounds are regular functions of z. Finally, we show (III) for z within D* both bounds
are equal, thus the thermodynamic limits exist and are regular in z. The physically interesting part
of D*, which includes the part ~z~ & 1/f of the non-negative real z axis, is considerably larger than
that defined by the Groeneveld bound. Following these proofs, we present some heuristic arguments
for existence of these limits for all 0~z & ~, and their continuity in z. The latter is tantamount to
nonexistence of Ehrenfest' phase transitions for the systems under consideration, e.g. , hard spheres.

The N-particle interaction potential is written

U„(N) =U~(1, 2, ~ ~, N)= U~(r„, r~) = g U, , ; U, , =U (r, ,).1~i &j~N

We now define Boltzmann factors and f bonds:

v„(1U) —= exp[ U„(N)/kT] =—
1 —i& j —E

v, , , v, , =exp(-U, , /kT), f, , =v, , —l. (2)
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We deal with an open system (grand canonical ensemble) of particles in an s-dimensional domain of
volume V. The interaction potential 0'„ fulfills the conditions

(3a)

{3b)

(4)

n =- 1 2 ~ ~ ~ n N-n=-n + 1 " ~
¹ d(N-n) = d'r d'r .tl +1 N

Here I {z,V) is the grand canonical parhtion function:

1.{z V)-=Q (z"j~t)J v (P}d(X} d(X)=d'r d'r

means integration over V in the limit V- ~. These conditions include hard-core potentials
as special cases; hard cores, however, are not essential for the validity of our theorems.

Our distribution functions are defined by

P„(n;z; V)=-[I.(z; V)] ' g [z" "/(N —n)t])( Zy g v, , vg „(Ã-n}d(N-n);
X=n 4=1 j=n+1

The funchons P„(n;z; V) are related to the usual distribuhon funchons and to the thermodynamic ratio
by

v„(n)P„(n; z; V) =z p„(n; z; V), f(z; V) =- p{z; V)/z = V J~P,(I;z; V)d(l)„

with p(z; V) the average grand canonical ensemMe number density. The omission of the direct Boltz-
mann factor v„(n) from the definition (4) results in simplificahon of subsequent development. For the
same reason we define conditional distribution funct:ions

P„(n;z; V)= P„{n;z;V)/P-„, {n-l;z; V), P,(1;z; V)=P,(1;z; ),

with n-1 = 1, 2, ~ * ~, n-1. The thermodynamic limits (here V-~) are denoted by P„(n;z), F„{n;z), and

g(z) = p(z)/z, respectively.
In order to define our sequences, we introduce exponenhal coupling:

v, , (A, )=1+X,.f,, , 0 &3, &I, i &j; v, ,(1)=v,, ; v, , (0)= l. (8)

Thus, when A,. = 0, the ith particle is effectively removed from interaction with the succeeding parti-
cles (in the sense that if, e.g. , i =4 then, for &, = 0, parhcle 4 does not interact with 5, 6, ~ ~, N, but
still interacts with 1, 2, 3). In view of the second equation in {8)„weadopt the convention that only
coupling parameters different from unity will be indicated explicitly.

Vfe now define coupled distribution functions

&N-n n N

P{n;&;z; V}-=, , Q, „g g v, (~,)~ „(X-n)d(X-n).

Note that I.(z; V) is shll defined for the fully coupled system and does not depend on the set of coupl-
ing parameters A =A„X„~~ ~, A„. The same is true for the Boltzmann factors v~ „(N-n) of the re-
maining particles in the open system. When aB coupling parameters of the set X„are unity, we re-
cover the distribuhon funchon P„(n;z; V) for the actual fully coupled system. Finally, we define con-
ditional coupled distribution functions

F„(n;~„;z;V) -=P„(n; X;z; V)/P„, (n-l; X„„.z; V), X„,=-X„ (10)

From Eqs. (9) and (10), we have

P„(n;A. ; Vz)~~ O=P„,{n-l;X,;z; V), therefore F„(n;A;z; V)~g 0=1.

With these preliminaries we can now state and prove Theorem I: Given the condihons (8), definitions
(8) through (10), and z real and non-negative, there exist two sequences of functions, one monotone
increasing E ~' ''~(n A

.z. V) and the other monotone decreasing E ~'"&(n. & z V) with the fol-
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lowing properties:

F„~~ (n; X„;z) = lim F„'"~(n;X„;z; V) exists, all M & ~;

lim E„~2~+' (n; A. „;z)=F„(n;A„;z) &E„'(n;A„;z)= lim E„' ~(n; &„;z)
m m

(12b)

exists for all n, and if the thermodynamic limit F„(n;A„;z) exists, then

F„(n;&„;z) &F„(n;X„;z)&E„'(n;X;z). (12c)

Proof: On differentiating both sides of Eq. (9) with respect to X„, dividing by P„(n; A„;z; V), noting
that P„,(n-l; A„„z;V) is independent of 1„, and reintegrating we obtain the hierarchy

F„(n;A„;z; V) =exp[-zA„„F„,,(n+1; &„;z;V)],

with the operators A„~ defined by
~n

n-1
A„„E„,,(n+I;A„;z; V)= —f "d&„fP'r„, ,[f„„,, g v, „,, F„,,(n I;A.„;z;V)] ~ 0.

f = 1
(14)

The inequality follows from (3a) and (2). We now define our sequence by setting E»~" (0;~A. ;z; V)= 1,
for all k and all values of the A,. 's and coordinates, and

F„"(n;3;z; V)—= exp[ —zA„„E " ' (n+1;X„;z;V)]. (15)

Now, we have lim (A„~ 1) =A„ 1&~, remembering (3b) and noting that all v, , &1; thus (12a) follows
immediately by induction. To prove (12b) we obtain by induction, remembering the inequality in (14),
and using A„ instead of A„r in (15),

(20 + 1) (y (2A +- 3) (y (2m + 2) &y (2m)
n n n n

abbreviating F„~~(n; &;z) by F„~"~. The odd sequence is monotone increasing, and the even one mono-
tone decreasing. Since E„'~ ' ' ~I'„' ) for any k, m, both sequences are bounded; therefore both
converge to some limits (not necessarily equal). This is precisely Eq. (12b). To prove (12c) we

only need note that, if F„(n;A„;z) exists, it decreases monotonically with increasing A„. Equation
(11) thus yields a generalization of the Groeneveld inequality E„(n;A„;z) - 1. This, when used in (15),
yields F„~"'' &F„(n;A. ;z) &E„",by induction. This last inequality, and (12b), then yields (12c).
The proof of Theorem I is thus completed.

We now assert Theorem II: Given the conditions (3a), (3b), and z =re' complex, the limits F„' and

F„are regular functions of z in the open domain D: r &1/f, ~6~ & w/2. To prove this, it suffices
to prove (a) each F„~"~ is regular for zGD: r- 1/f, ~8~ &m/2, and (b) each ~E„~

~
-K, zE D. Since.

Theorem I means that the sequence converges at a set of points clustering at an interior point of D

(here along the entire positive real axis), Theorem II follows from Vitali's convergence theorem. "
Defining F„=R„exp(—ip„), R„~'~ =- 1, y„~'~ —= 0, the sequence equivalent to (15) becomes (of course,

in the limit V-~),
R ~~~=exp(-rA ~ [R, & -'~cos(e-q7, &&-

&)]]

q „'"'=rA„R„' '& sin(e-y„, ,~ -'~).
(17a)

(17b)

In Eqs. (17a), (17b), and from now on, we take the upper limits of integration over A„'s, Eq. (14),
to be 1. Lemma (a) follows immediately by induction. To prove Lemma (b) we show that R„~~~

&1, z&D, all k, M& ~. From (17a) we see that this will hold if cos(0—y„, ,~ '~) ~ 0, that is, if ~8
'

~

&7t/2. We see that this condition holds for M=1, 2. For any M this condition holds by
induction if rA» 1 & 1, any k. Now, we have, for any k, A» 1 &A, 1=f, from (14) and (3a), (3b). This
completes Lemma (b) and thus Theorem II.

Theorem III reads: For zED, the thermodynamic limits F„(n;A„; z) exist, and are regular functions
of z. This theorem will follow from Lemma (c): The limits F (n;&„;z) and F'(n;X„;z) are given by the
same hierarchy of integral equations; from Groeneveld's lower bound for radii of convergence of
cluster- expansions'; and from Theorem II. The latter, together with Groeneveld's result, means that
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E„and E„' are both regular in the domain D* consisting of D (bounded by semicircle of radius 1/f
to the right, and by the imaginary axis to the left) combined with D, (bounded by semicircle of radius
1/f e to the left). Therefore both bounds can be expanded around any point within D*, in any domain
contained in D . Lemma, (c) then means that the expansion coefficients of E„and E„' are identical;
thus E„=E„'.Theorem III then follows from (12c), Theorem I. To prove the lemma, we note that
the proof of Theorem I also leads to the following equations for the two bounds:

E„=exp( —zA„E„,,+), E„+=exp( —zA„E„,, ).

Substituting the corresponding equations for E'„, ,' and F„,, we obtain

(18)

E„*=exp[-zA„exp(—zA„, , E„,,*)], where *=+ or —.

Lemma (c) and Theorem III are thus proven.
In view of the relation between discontinuities in distribution functions and orders of (Ehrenfest)

phase transitions, "Theorem III means that no such phase transitions of any order are possible for
systems with non-negative interactions at activities lower than 1/f. A heuristic argument to the effect
that this statement may be valid for all finite activities stems from the following proof of the alterna-
tive Theorem IIIa: For z real, 0 z 1/f, the thermodynamic limits E„(n; A.„;z) exist and are continu-
ous functions of z. This proof proceeds as follows: It is easy to show that the M sequences converge
uniformly with respect to z in any closed interval 0 ~z ~ c & ~. Since each member of the sequence is
continuous in z, this means that the limits F„and F„' are both continuous functions of z. On the
other hand, it is easily seen that the functions E„given by (13) are components of a vector F in Banach
function space, and the operators Q„=exp( —zA„) are components of the corresponding vector Q in this
space. It is easy to show that, for z-1/f, the operator @is a contraction (that is, ~~Q f—Q. g~~ - ~Pf

—
g~~,

with f, g arbitrary functions in Banach space"). This means that the vector operator equation Q F
=F can have at most one solution; t hus. ~„'= E„and, from (12c), E„exists and is continuous in z
for z ~ 1/f.

Now, if one calculates using an explicit form for interaction potentials (hard spheres), one finds that
IIIa is valid for z -c„with c„,&c„&1/f, but proof. that c„can be arbitrarily large is lacking as yet.
Work in this direction is in progress.

In closing, we note that the I-sequence method is not limited to non-negative interactions. For
potentials consisting of positive core and an attractive part it leads to some rather remarkable fac-
torization theorems for distribution functions. These and other matters will be reported in the full
article.
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