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%6 PX'OV6 thRt th6 16RdlQg J-PlRD6 81DgUlRX'it/ 1D t46 8~IIMtX1C PRXtIRl-WRV6 RIDPljtUd6

E +(t) near t =0 should behave like u (t) =1+AtlI1+terms of higher order in t namely
the Pomeranchuk pole (or cut) must be a pair of complex-conjugate poles (cuts) if the
total cross sections or~ ~ '(s)~ „- const and or~(~) ~or~(~), where P and a denote parti-
C16-PRItlC16 RQd RDtlPRZtlC16-PRXtlC16 8CRtt6X'1Dg, X'68P6CtlV6IQ. %6 U86 ODlg UDltRX'it+

RDd RQR15ClCItg tO PX'OV6 tl118.

81nce the work Qf PQIQerarlchuk 1n 1958~ many theorists hRve tiled to prove the so-CRlled Pomeran-
chuk theorem stRrtlng fronl the axioms Qf 1 elRtlvlstlc quantum theory. But lt now seems almost
clear that we need at least one ungrounded assumption (which essentially says ImF dominates ReE at

high energy) to prove the "theorem "O.n the other hand, recent results from the Institute for High En-

ergy Physics-CERN collaboration' show that or(K P) does not fall to cr(K'P) when the energy is sup-

Posedly 111gh (55 GeV/c), If gr(K P)-(rr(K P) does riot vanlsll 111 'tile high-energy 111111t, we will see R

violation of the Pomeranchuk "theorem. " Although the violation of the theorem may not be agreeable
from the esthetic point of view, ' we cannot exclude this case at the present time. If fact several auth-

ors have already proposed some models' motivated by the Serpukhov experiment. '
Our main object in this note i.s to derive some rigorous theoretical consequences of the breakdown

of the Pomeranchuk "theorem. " %e also propose a model implied by this result. For simplicity we

consider the scattering of a scalar particle (mass M) or antiparticle with a scalar target (mass M).
Now let us prove the following theorem:
Tlleol'el11 1.—If tile particle cl 088 sect1011 0'r (s) Rnd tile Rn'tipR1 tlcle c1'088 sectloll 0'r (8) Rppl'0Rcll

constants when s —~ and or~(~) +or'(~), then

ImE~"(s, t) ~ (K~"/16rr)sJ, (2rc~'Ins(-t)'i2),

when 0 «f ~ f, (t, = threshold in the f channel). Here'

(2)

and K ' 18 a constant satisfying

Irrr'(")-ar'( ) I

4rrsi2 [& P.a(~)]1/2

C 18 also a constant sat1sfy1ng

where N is the number of subtractions in the Mandelstam representation. If we do not assume the

Mandelstam representation but quantum field theory, N is the degree of the polynomial which gives
the bound to the scattering amplitude. '

Proof. We first e—xpand E'(s, t) =E~(s, t) +E'(s, i) into partial waves:

E ~"(s, f) = Q (21+1)a,~'(s)P, I + —, , q„—-„2&s.87l/s —"-,, 2f

&s )=O s-4M' (5)

As was shown by Martin' we can neglect the summation above I = Cx, where x = s'/' lns, if C satisfies
the inequality (4). Schwartz'8 inequality gives us (x -=K~')

Kg KX Kg

16rr g(21+1)IRea "(s)I - ([g(21+1)Ia "(s)I'][/(2l+1)]j'" - 4n'"K[0 "( )]'"sllls
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Since we have'

lim ReF (s, 0) = 2m '[or'(~)-or~(~)]sins, lim ReF'(s, 0)/a =0,

and v satisfies the inequality (3), we get

16m g (2l+1)~Rea, ~"(s)~ ~ (m '~or'( ) cr-r~( )~-4v'"~[@„~'( )]'"}sins,

Because of unitarity we have

Cx 2) &x.

ImF(s, t)" o- 16m@(21+1)Ima"(s)P, 1+, P,„1+,16vg(2I+ I)
~
Re&,~'(&) j2, (9)

8~'o Kx S-4M s s-4V'
KX

where 0 ~t&t, . We have used the fact that P, (z) is an increasing function of I when z o1. The summa-
tion in the right-hand side of (9) can be estimated in the following way:

Z', (2~+1)[(Resg~'(s) 7' - [E(2~+1)I R«~"I]'/[ Z(2~+1)] ' (Schw»t2; ineq«ity)

[because of (6)] Substituting (10) into (9) and using the appropriate asymptotic form fol P&(z) we ar-
rive at the theorem.

Next we proceed to the theorem concerning the upper bound:
Theorem 2.' —Under the same assumption as in the previous theorem we have

ImF ~'(s, t) ~ or"(~)sJ,(2C lnsV'-t),

when 0 ~~ I; ~~ f~
& to.

Proof .
ImF ~"(s, t) - 16& Q (2l+1) Ima, (s)P,(1+2t/s) & Pc(1 +t2/s)Q (2l+l)ag(s)

8~on 3=0 s~~ 7=0

or"sPc, (1+2t/s).

Since Pc„(1+2t/s), — J,(2C lnsE-f) we get the theorem.
As a consequence of these two theorems we get the following important corollary:
Corollary. —Under the same assumption as in Theorem 1, the leading J-plane singularity of E~+(f)

behaves like a, (t) =1~AKt+terms of higher order in f near f =0, where A satisfies

2~ ~A &2C.

The proof is obvious if we use the asymptotic form of Z,(z). This corollary does not tell us whether
the pair of singularities is a pole or a cut but it tells that the singularities should collide at t =0.'

%e can also show

K"s d" QA

&
„J,(2at" lns) ~

&
„ImF ~"(s, f) ~ or~'s„„&,(2Ct'"lns) (n =0, 1, 2, ~ ~ ~ )t=0 dI;" '

4=0

using the same method as in the above theorems.
On the basis of above considerations we propose the following model for the high-energy scattering

amplitude:
f'f 6 (g)

F'(s, &)
- 4 P;(~) sinn a;(t) (12)
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ImE (s, t) — vr~(~)sJO(b~insv' t-)-or'(~)sJ, (b'Ins&-t).

Direct computation of ReE (s, f) using dispersion relation shows that we must have"

or'(")/&' = ~r'(")/&'

in order to get rid of the singularity at t =0. Then we get

s o ~(ca) I bP( I)Ii-2 1na
ReE (8, f) - ——, ~i, g ~a(,)Ii2 1„,dA J()(A),

QQ

(14)

(15)

When b~'(-f)'i21ns is large, the last integral is approximately

~i, a (2f P.a( f)li21nS/&)1/2

and C(y) and S(y) are Fresnel'8 functions.
In conclusion we showed that when or~'(8), „-const and or (~) terr'(~) the leading singularity in E~'(t)

must be two complex-conjugate poles or cuts." We think this result is remarkable since we have
used only unitarity and analyticity to derive it. Our model for E (s, f) is that of colliding cuts as in
some of the papers of Ref. (5). It satisfies the scale invariance of Gribov et al. , but because of possi-
ble oscillation of E(s, x/ln's) when s —~ we could not prove the validity of scale invariance in general.
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