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We prove that the leading J-plane singularity in the symmetric partial-wave amplitude
F;*(t) near ¢t =0 should behave like a ()= 1+ At1/2 4 terms of higher order in ¢; namely,
the Pomeranchuk pole (or cut) must be a pair of complex-conjugate poles (cuts) if the
total cross sections gp?*® (s)5=% const and gp? (©) # 0,%(<), where p and a denote parti-
cle-particle and antiparticle-particle scattering, respectively. We use only unitarity
and analyticity to prove this.

Since the work of Pomeranchuk in 1958,' many theorists have tried to prove the so-called Pomeran-
chuk “theorem” starting from the axioms of relativistic quantum theory.? But it now seems almost
clear that we need at least one ungrounded assumption (which essentially says ImF dominates ReF at
high energy) to prove the “theorem.” On the other hand, recent results from the Institute for High En-
ergy Physics—CERN collaboration® show that o ,(K p) does not fall to o(K"p) when the energy is sup-
posedly high (55 GeV/c). If o.(K p)-o,(K'p) does not vanish in the high-energy limit, we will see a
violation of the Pomeranchuk “theorem.” Although the violation of the theorem may not be agreeable
from the esthetic point of view,* we cannot exclude this case at the present time. If fact several auth-
ors have already proposed some models® motivated by the Serpukhov experiment.?

Our main object in this note is to derive some rigorous theoretical consequences of the breakdown
of the Pomeranchuk “theorem.” We also propose a model implied by this result. For simplicity we
consider the scattering of a scalar particle (mass M) or antiparticle with a scalar target (mass M).

Now let us prove the following theorem:

Theorem 1.—If the particle cross section orT’(s) and the antiparticle cross section ¢,%s) approach
constants when s - « and g,(») #0,%«), then

ImF*4(s,t) = (K*%/16m)sd,(2x"%Ins(~t)'"?), 1)

§ > ®

when 0 <t <t, (t,=threshold in the ¢ channel). Here®

{n o () =0 () =4 2k g, 20 () 112}

Kp' C2 (K’ a)z ’ (2)
and «?'? is a constant satisfying
0 <P <t lo()-042(0)| ®3)

47372 [Ue,”“(w)] 1/2
C is also a constant satisfying
C>N/Vt, (4)

where N is the number of subtractions in the Mandelstam representation. If we do not assume the
Mandelstam representation but quantum field theory, N is the degree of the polynomial which gives
the bound to the scattering amplitude.”

Proof.—We first expand Fi(s, t) =F *(s, t) + F%(s, t) into partial waves:

8nV's Z (21 +1)a,>*(s)P, (1 +;—-_%r4—2> , 5% Vs, (5)

s 1=0

F?as,t)=

As was shown by Martin” we can neglect the summation above /=Cx, where x =s'21ns, if C satisfies
the inequality (4). Schwartz’s inequality gives us (k =g

161rZ)(2l+1)lRea,"' s)l {[Z(2l+1)]a," (s)? ][Z) 2 +1) 12 < 41 %[0, %(=)]"3sIns.  (6)

1=0 1=0 s>
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Since we have!

lim ReF (s, 0) =27 [g,%©)=0,7(«)]sIns, lim ReF*(s,0)/s =0, )

s> s>

and k satisfies the inequality (3), we get

Cx

16m 25 (22+1)|Rea,”%(s)| = {7 o, %()=0 () |-47%[0,,>*%(w)|'/?} s Ins, (8)

1= Kx §—>®
Because of unitarity we have

ImF(s, t)** = 16112(2l+1)1ma" (s)P,<1+ 4M2> = PK,<1+ iM2>16ﬂE 21 +1)| Rea,”%(s)[?, (9)

s> ®

where 0 <{<¢,. We have used the fact that P ,(z) is an increasing function of / when z 21. The summa-
tion in the right-hand side of (9) can be estimated in the following way:

g(zl +1)[(Rea,**%(s) ] [2(21 +1)| Rea®?|]2/[ 2(21 +1)]* (Schwartz inequality)

§—>® Kz

S S (-5 CO - P GO 41r”zlc[op ()]
s> (16m)2 C%—k

(10)

[because of (8)]. Substituting (10) into (9) and using the appropriate asymptotic form for P,(z) we ar-
rive at the theorem.

Next we proceed to the theorem concerning the upper bound:

Theorem 2.5—Under the same assumption as in the previous theorem we have

ImF *%(s,t) < 0,"%)sd,(2C InsV —¢), (11)
sorco
when 0 <t <¢, <{,.
Proof. -
Cx
ImF #%s,t) ~ 161 2 (21 +1)Ima,(s)P,(1 +2t/s) < Pg,(1+2t/s) E 21 +1)a,(s)
§=>® 1=0 s—> 1=0
= g P%Pc, (1+2t/s).
s>

Since P, (1 +2t/s) 5= J,(2C InsV —t) we get the theorem.
As a consequence of these two theorems we get the following important corollary:
Corollary.—Under the same assumption as in Theorem 1, the leading J-plane singularity of F,*(t)
behaves like a,(t) = 1+ AVt +terms of higher order in ¢t near £ =0, where A satisfies

2k <A <2C.

The proof is obvious if we use the asymptotic form of J,(z). This corollary does not tell us whether
the pair of singularities is a pole or a cut but it tells that the singularities should collide at ¢ =0.°
We can also show

K*%s dr

Ter aido (2kt21ns) I

9 1p (s, )| < sg—,,J(zcﬂ/Hns) (n=0,1,2,+-+)
t=0 t=0
using the same method as in the above theorems.
On the basis of above considerations we propose the following model for the high-energy scattering

amplitude:

dt"

1+e-ﬂra~(t) ws(t)
F*(s,0) ~_ ’; B e S (12)
where

a,(t)=1£AVE, B,(t)=B-(-V1),
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and!©

ImF “(s,t) ~ 077(«)sdy(b? InsV —t) =0 %) sd,(b° InsV —1). (13)

U
Direct computation of ReF “(s, t) using dispersion relation shows that we must have!!

07 () /b2 =03%() /b° (14)
in order to get rid of the singularity at £ =0. Then we get

- s gpf( b2 (-£)1/2 1ns
ReF (s, t) ~ - ( ) fba(-t)llz]ns drd,(x), (15)

2
s T

When b*'%—t)'/?1Ins is large, the last integral is approximately
Va2[c(y?)-c(y®) +S(y*)-S(y)],

where
y?e={2b?%(~t)/2 Ins /7 }}/2

and C(y) and S(y) are Fresnel’s functions.

In conclusion we showed that when ¢,**%(s) ;5% const and 0,%(«) # 0,%«) the leading singularity in £,%(t)
must be two complex-conjugate poles or cuts.’?> We think this result is remarkable since we have
used only unitarity and analyticity to derive it. Our model for F (s, t) is that of colliding cuts as in
some of the papers of Ref. (5). It satisfies the scale invariance of Gribov et al.,® but because of possi-
ble oscillation of F(s,x/In%s) when s -  we could not prove the validity of scale invariance in general.
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Foundation for financial support.
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