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It is shown that the repulsive (not merely the positive) portion of the Lennard-Jones
potential quantitatively dominates the equilibrium structure of the Lennard-Jones liquid.
A simple and accurate approximation for the radial distribution function at high densities
is presented.

It is often remarked that the repulsive forces
in a simple liquid play an important role in form-
ing the equilibrium structure of such a fluid. ' '
By studying the spectrum (Fourier transform) of
the two-parbcle correlation function,

k(k) = pJ[g(~) I].-'-"'d. , (I)

where g(r) is the usual radial distribution func-
tion and p is the average number density, we are
able to formulate this idea in a precise and use-
ful way.

In order that a convenient basis for comparison
be available, the Lennard-Jones fluid is consid-
ered: a classical &-particle system in which
the total potential energy is a sum of the Len-
nard- Jones pair potentials, w (r) = 4m [(o/r)"
-(o'/r)']. Our attention is focused on k(k) for the
Lennard- Jones liquid. In particular, for liquid
densities (po'&0. 4) we hypothesize and then veri-
fy the following statements: (I) At intermediate
and large wave vectors (ko»} the quantitative
behavior of h(k) is dominated by the repulsive
forces (the attractive forces are primarily mani-
fested in the small-wave-vector portion of the
spectrum). (2) For high densities (po'&0. 65) the
behavior of k(k) even at small wave vectors (ko
&w) is at least qualitatively determined by the re-
pulsive forces. Physically, the first statement
is understood once it is recalled that k(k) + I rep-
resents the linear response of the fluid structure
to a disturbance of wavelength 2n/k. ' While a
short-wavelength disturbance will probe both the
repulsive and attractive forces in a fluid, it is
reasonable that the presence of the harsh repul-
sions, rather than the slowly varying longer
ranged attractions, will dominate the response
of the fluid to such a disturbance. The second
statement is equivalent to asserting that the cor-
relations in a simple liquid are almost entirely
due to excluded-volume effects when the density
is high. While this latter part of our hypothesis
has been stated qualitatively by many authors, ' '
its quantitative validity has not been appreciated.

To see how the repulsive portion of the pair
potential affects the liquid structure, it is con-

venient to consider a reference system in which
the pair potential, uo(r), contains all the repul-
sive forces implied by the Lennard-Jones poten-
tial, so(r), and no attractive forces. With the
additional condition that the reference system has
has a well-defined thermodynamic limit, uo(r) is
defined uniquely,

u, (r) = w(r) + e, r & 2'"o,

=0 ~ ~2"'0 (2)

g.(~) =y.(~) em[-Pu, (~)],

where p=(kqT) '. Physically, y, (r} gives the
correlations that exist in the reference system
beyond the range of the reference interaction
uo(r). Since this interaction is harshly repulsive,
it seems probable that yo(x) can be approximated
by the similar function appropriate to a hard-
sphere system of diameter d, y„(r). For this
reason, we consider the following approximation:

g,(~) =y&(~) exp[-&u. (~)]

It should be noted that the repulsive part of w(r)
is the portion with negative slope and not the por-
tion which is merely positive. In terms of the
radial distribution function for the reference sys-
tem, g,(r), and its spectrum, k,(k), the hypothe-
ses stated above can be expressed as follows: At
all liquid densities, the approximation k,(k) =k(k)
is very accurate for ko'»; at high densities (po
&0.65), g(r) closely resembles g,(r). Thus, the
task of verifying our hypotheses is reduced to de-
termining g,(r) and k,(k). Rather than perform
expensive machine calculations to obtain this in-
formation, we have invented an approximation
method to describe the reference system. Tests
have been performed' which indicate that our
treatment is certainly accurate enough for the
purposes of this work. To discuss the method,
we introduce the function yo(r) which is defined
by the equation
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or

k,(k) =k, (k)

+ p fdry, (r)(e s"&-e s"')e '"', (4')

I I I I
f

I I I . I2.0

fd (y e s"o—1) =fdr(y, e "&-1).
g Ql U/&8 (5)
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Finall, as a further check on the accuracy of

we replace g(r) by go(r) in the pressure viria
equation,

p/p = 1 + (Pp/6) J r [8x(r) /&r j g (r)dr,
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FIG. 2. Plots ofg(x) at a high density: po =0.85, (pe) =0.88. The line represents the approximationgo(r)
=g(r); the circles are molecular-dynamics results (Ref. 1); the dashed line represents the numerical solution of
the Percus-Yevick equation for the Lennard-Jones potential (Ref. 7).

and in the energy equation for the excess internal
energy,

&~I& =(&pi2) f~(.)d~)dr. (7)

Once again, the calculations were performed
within the context of our approximate treatment
of the reference system. A few of our results
are presented in Table I and compared with those
obtained from molecular dynamics' and the nu-
merical solution of the Percus- Yevick equation
for the Lennard-Jones system. ' These results
are representative of those found when a far
more extensive comparison with molecular dy-
namics is made at several high densities (po'
-O.65).'

It is our opinion that we have demonstrated the
validity of the hypotheses stated at the beginning

of this report. In so doing we have also discov-
ered a very simple and accurate theory for the
structure of dense liquids: namely the approxi-
mation g(r) =g,(r) combined with Eq. (4). In a
future publication, ' our ideas will be documented
more thoroughly. At that time we will also dis-
cuss, in detail, the relevance of our hypothesis
to perturbation theories for liquids. '

We wish to thank Hans C. Andersen. His work
with us led to many of the ideas discussed here.
We thank Kurt E. Shuler for his hospitality and
support during our stay at the University of Cal-
ifornia, San Diego.
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Table I. Approximate and molecular-dynamics results for the pressure and internal energy as obtained from
Eqs. (6) and (7), respectively. Columns 3 and 6 give the values found by applying the approximationgo(r) =g(r).
columns 4 and 7 give the molecular-dynamics (MD) results (Ref. 8); the error bounds here are +0.05. The results
obtained by using the solution of the Percus-Yevick (PY) equation for g(~) (Ref. 7) are given in columns 5 and 8.

Thermodynamic
state

This work
Pp~p

MD This work PY

0.85
0.85
0.85
0.85

0.88
0.786
0.719
1.128

1.82
1.23
0.69
2.82

1.64
0.99
0.36a
2.78

3.17
2.97
2.82
3.57

6.77
7.70
8.52
5.08

6.75
7.70
8.51
5.05

6.61
7.51
8.28
4.98

~Molecular-dynamics results for po =0.85, (8&) =0.72, predict /Pip =0.48 (Ref. 8).
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It is shown rigorously that, for systems with non-negative interactions and integrable
Mayer f bonds (e.g. , hard spheres), distribution functions and the thermodynamic ratio
p/z exist in the limit V—~, and are analytic functions of the activity z, for z& 1/f in the
right-hand half-plane, with f the absolute value of the integral of the f bond. Heuristic
arguments then indicate that these functions are continuous in z for all z & ~. This would
mean that no Ehrenfest phase transitions are possible for such systems.

The problem of bounds for thermodynamic and distribution functions and the existence of thermo-
dynamic limits has aroused considerable interest in recent years. ' While the problem has been treat-
ed successfully for simple thermodynamic functions such as pressure or the thermodynamic ratio
p/z (with z the activity and p the number density), ' existence of limits for distribution functions has
not been proven even at low activities. On the other hand, the question of the thermodynamic signifi-
cance of singularities obtained from approximate theories for non-negative interactions, and of dis-
continuities observed in computer calculations, 4 is still unresolved.

In this note, we report the following rigorous results for systems with non-negative interactions:
(I) For z real and non-negative, the thermodynamic limits of distribution functions and of the thermo-
dynamic ratio (if they exist) are bounded above and below by the limits of two sequences, monotone
decreasing and monotone increasing, respectively. The members of these sequences can be calculat-
ed successively in a straightforward manner, thus providing successively better and better approxima-
tions to these functions. (II) For z complex in a domain D* bounded on the right by the semicircle
z & 1/f (with f the absolute value of the integral of the Mayer f bond), and on the left by the imaginary
axis and the semicircle z & 1/ef (the Groeneveld lower bound for radii of convergence of cluster ex-
pansions'), both bounds are regular functions of z. Finally, we show (III) for z within D* both bounds
are equal, thus the thermodynamic limits exist and are regular in z. The physically interesting part
of D*, which includes the part ~z~ & 1/f of the non-negative real z axis, is considerably larger than
that defined by the Groeneveld bound. Following these proofs, we present some heuristic arguments
for existence of these limits for all 0~z & ~, and their continuity in z. The latter is tantamount to
nonexistence of Ehrenfest' phase transitions for the systems under consideration, e.g. , hard spheres.

The N-particle interaction potential is written

U„(N) =U~(1, 2, ~ ~, N)= U~(r„, r~) = g U, , ; U, , =U (r, ,).1~i &j~N

We now define Boltzmann factors and f bonds:

v„(1U) —= exp[ U„(N)/kT] =—
1 —i& j —E

v, , , v, , =exp(-U, , /kT), f, , =v, , —l. (2)
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