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Where nickel-cobalt is ferromagnetic, the spin fluc-
tuations are (a) noncoilective with a gap in their spec-
trum equal to the exchange energy, (b) spin-wave ex-
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to allow for the gap. However, spin-wave excitations
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Anderson's theory of localization in disordered systems is extended. It is shown that
mobility edges exist, in agreement with the Mott-Cohen-Fritzsche-Ovshinsky model.
As the randomness increases, the mobility edges move inwards into the band, and their
coincidence is termed Anderson's transition. A criterion is developed restricting the
energy regions where mobility edges can be found; explicit results are obtained for a
Lorentzian distribution of single-site energies.

Recent models of the electronic structure of
disordered materials suppose that there are con-
tinuous bands of extended states with tails of
localized states. " Current interpretations of
experimental data rest heavily on this notion, "
but no rigorous proof has been given. There
seems little doubt of the existence of localized
states in the tails, ' but whether the character of
the eigenstates changes abruptly from localized
to extended at certain critical energies (termed
mobility edges') remains in question. Anderson'
had demonstrated that for an electron moving in
a rigid lattice subject to a Hamiltonian with ran-
dom matrix elements satisfying certain condi-
tions, the states in the middle of the band are
localized, and transport ceases when the random-
ness in the matrix elements of the Hamiltonian
exceeds a certain critical value related to the
bandwidth. Mott' synthesized Anderson's result
with the work on localization in the band tails by
arguing for sharp transitions from localized to
extended states and back to localized states with-
in the band, for randomness smaller than Ander-
son's critical value. This model, proposed inde-
pendently by Cohen, Fritzsche, and Ovshinsky, '

we refer to as the Mott-CFO model.
We consider the motion of a particle in a three-

dimensional periodic lattice~' such that at each
site n of the lattice the particle can occupy a
Wannier state (5) of energy ~-„. The Hamiltonian
ls

(1 (II~m) = e@5pg+ V)-,
where Vp- = V, - p and Vpp= 0. The disorder is
introduced into the system by allowing the single-
site energies e-, to be random variables; any two
quantities &-„, &p are taken as statistically inde-
pendent whenever the distance r-„p is longer than
a finite correlation length. This eliminates long-
range order from our system. For simplicity we
assume that Vp- is a constant, V, for nearest
neighbors, and zero otherwise.

Following Anderson we use as a criterion for
the existence of localized states overlapping with
a, given site 1=0 the absence of complete diffusion
from this site, i.e., p«w0, where p« is the prob-
ability of finding the particle in the state (0) at
t=~if initially (t=0) it was in ~0). It can be
shown that

S
p =lim — „dEGo(E+ is)GO(E-is),s~o+ 77
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where G,(E) is the 0,0 matrix element of the Green's function G(E) =(E-H) '. Equation (2) can be
written as p« = I „f~(E)dZ, where f,(E) is a positive quantity given by

fo(E) =n,(E}lim (1-[a,(E+ is)-n, (E-is)]/2is] '.

Here n, (E} is the contribution to the density of states from site 0, and d,,(E) =E--&,-GO (E) is the self-
energy for site 0. Thus, in order to have P«a0, eigenstates of energy E overlapping with the state
j0) should exist [i.e., n, (E)x0] and should be localized $i.e., 1-[6,(E+is)-L,(E-is]/2is 'g0j. The
latter holds when A,(E) is analytic across the real axis. Isolated singularitie"- in g(E) on the real
axis have no importance because no(E) simultaneously vanishes. Only a branch cut in Q(E) on the
re& axis corresponds to extended stRtes.

It can be showns that the renormalized perturbation series4 (RPS) for +(E), i.e.,

converges to an analytic function RpRrt froIQ

siIQple poles everywhere on the conlplex E plRne

except on those portions of the real axis which

correspond to extended states. Thus an eigen-
state of energy E overlapping with the state j 0)
is localized if and only if the RPS (4} converges.
In (4) 4-„' ' "' is the self-energy corresponding
to a Hamiltonian which differs from (1) in that

Folio1ng Andex'son 8 orlg1DRl suggestion~ we

hRve approached the problem of convergence of
the RPS (4) probabilistically: For each energy
E we find the probability that the series (4) con-
verges (diverges). It can be shown' by mathemat-
ical and physical arguments that, when there is
Do long-range statistical correlation Rnlong the
variables 1~-}, there exist two non-negative
functions 1.(E) and y(E, s) such that the magni-
tude of the Mh-order term of the RPS (4), ja~j,
is sharply distributed' around the quantity y"(E,
s). Moreover when L,(E)-1, X(E, s}, 01.(E}and

when 1.(E) «1, X(E,s), 01. The quantity I-"(E)
18 def1Ded Rs

and P indicates summation over all the indices
if, ~ 5~ with the restri, ctions n, c 0, D t D„Q, ~-

ri~=n„» - -., O. Thus the following theorem surn-
mar3. zes oux' x'esult8:

Theorem: Consider the function L(E) defined

by (5) and (6). The regions of the energy spec-
trum for which L{E)& 1 consist entirely of local-
ized states, those for which 1.(E) & 1 consist en-

tirely of extended states, Rnd the solutions of the
equation 1.(E,) =1 give the positions of the mobil-
ity edges E,. L(E) is therefore a localization
function.

Suppose that I is R measure of the degree of
randomness in the system. Then I'=0 coxxe-
sponds to the case of a perfect crystal and, since
all the eigenstates of the system are then extend-
ed, 1.(E)r 0«1 for E inside the band, with the
equality obtaining at the band edges. On the -other
hand, when I -~ one cari show that +(E) ap-
proaches zexo ever~here and consequently that
I.{E) r„=0. Assuming that I.(E) is a continuous
function of I" for each F-, we can conclude that
for eRch energy E th616 18 a cx'1t1cRl vRlue of I,
I;(E), such that for I'« l,(E), 1.(E}&l. If we
define I', =max(I', (E)] we see that for I'& I"„1.(E)
& 1 for every E and consequently all states are
localized. This is the Anderson transition. For
0 & I" & I', thex e are mobility edges at enex gies
E„satisfying the equation 1.(E,) =1, which sepa-
1ate I'eg1ons of localized froDl 1 eglon8 of extend-
ed states, in agreement with the Mott-CFO rnod-
61. It should be po1nted out that Anderson and
also Thoulesss have examined the case E =0 and
have found qualitatively similar results although
Dot identical with the estimates to be presented
here.

One can obtain Rn order-of-magnitude estimate
for the localization function 1(Z) by neglecting
the 6-„'"'"' ' in Eq. (6) and by assuming that
the distribution functions for each &-„Rre identi-
cal. Then

where lne = (inj E-~,. j), and e is a. correction
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factor determined by the condition L(E,)„0=1,
where E, is the band edge. K is the percolation
constant' which is about equal to 2Z/3, and Z is
the number of nearest neighbors. We have ob-
tained explicit results in two specific cases:
(a) when the distribution of e, is a rectangular
one with total width W; (b) when the distribution
of e,. is a Lorentzian one of half-width I'. For
case (a) the result for L(E) is identical to Z
xexp(lnl T l) where (lnl T l) is given by Eq. (11) of
Ref. 5. In case (b) the result is

L,(E) =zv/(E'+ rm)"'

Anderson's transition occurs when 8'=8', and
F = I', for cases (a) and (b), respectively, where

8",= 2.7B,

it follows that

I.(E) - z(E) for lE-p(E) l

o- zv. (13)

However I'~(E) as defined in (12) is nothing else
than the Nth-order term of the RPS for &,[ lE
-g(E) l], where &, is the self-energy corre-
sponding to the periodic case e-, = (e„-)=0 (for

- every K). From the theory of periodic systems
it is well known that the RPS for &,(E) converges
if lE l»v. Consequently I'(E) - 1 for F(E)=-ZV/
lE-P (E) l

& 1. Thus we find that

fine

S"(E)

=Z'v, ;,~;,'[lE-Z(E) I]V-.,;,. V-.„„(12)

F, pB. (9b) L(E) &1 if F(E) &1, (14)

In Eqs. (9), B=2E,=2ZV is the bandwidth. Let
us note that Anderson's best estimate for 8", is
4 3B U. sin. g the correspondence 4W—I' [prob( le, l

& ~W) = —,
' and prob(le, .

l
& I') =-, for the rectangular

and Lorentzian distributions, respectively], we
see that the estimate (9b) for the Lorentzian is
about 25% less than the estimate (9a) for the
rectangular. The fact that the Lorentzian gives
a lower value for the critical randomness is
probably due to its long tails.

A probably better estimate for the quantity
L(E) can be obtained if we replace the quantities
4-„. '"&' '" in (6) by h-„. and assume that the sys-
tem is periodic on the average. Then

L(E) = pKVGO,

where P is determined from the condition L(E,) r
=1 and G, is given by Eq. (6).

Estimate (10) however invloves the nontrivial
task of evaluating G,= exp(inl G, l). This evalua-
tion can be done exactly for the case where the
~,. are independent random variables with a
Lorentzian distribution function. Explicit results
will be reported in detail elsewhere. '

We conclude this Letter by showing that an up-
per limit can be found for the quantity L(E) when

where g „-, '"&'"' is the n;, n,. matrix element of
the Green's function corresponding to a Ham-
iltonian of the form (1) with @0= e„=
and up=(e| ) =0 for every ie0, n„~ ~ . Q(E)
is in general a complex function of E. One can
then show that l

g„-0 "i' '"[E-P(E)]l& g-„,'"' "
x [lE-g(E) I] if lE-'g (E) l

& zv. Thus if we de-

but that L(E)-1 as F(E)-1 only in the limit of
zero randomness. Otherwise L(E) remains less
than one as F(E) becomes equal to unity.

To summarize, if (11) is true then all the
states with eigenenergy E satisfying the relation
F(E) & 1 are localized. In the limit of zero ran-
domness the solutions of the equation F(E, ') =1
coincide with the mobility edges E,. For any
finite randomness the mobility edges are always
in the region where F(E) &1. One can estimate
the difference F(E,')-L(E, ') =1-I.(E, ') as being
o(I 1mB (E.')/[E. '-ReE(E, ')] l'"] fo»mall ran-
domness. This can be used for estimating the
difference E,-E, '.

The practical importance of the preceding re-
sults lies in the fact that there are cases where
(11) is satisfied either exactly (case of Lorentz-
ian distribution for e-„) or within the framework
of certain approximations [single-site approxi-
mations, most notably the coherent potential
approximation"" (CPA)]. We consider the
Lorentzian case here; the case of a binary alloy
has been treated numerically in Ref. 11 via the
CPA. In that paper, L(E) was incorrectly as-
sumed to be equal to F(E). However, the re-
sults reported remain valid because F(E)=L(E)
where they pass through unity except for the case
of large 5 (see Ref. 11 for definition) and for the
impurity sub-band, where the mobility edges
can be expected from the present analysis to be
well within the region designated there as con-
sisting of extended states. This is why the posi-
tion of the asymptote (Fig. 3 of Ref. 11) as cal-
culated from F(E) differs from the correct one
given by percolation theory.
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&n(E)&

-E'O E' =gE'-r'
c c b

tion E, &E, ' with E, = E, '-O(1' '/E ' ') -E, as
1 -0. As I" increases, M, ' move inwards into
the band (and so do the mobility edges M, ), thus
broadening the intervals of localized states at
the expense of extended states. Anderson's crit-
ical value 1", is always smaller than l, ' calcu-
lated from E, '(I' = I', ') = 0. In other words,

I

-E,-E, 0 E, E, =JEa

I' =o

I

Eb

and consequently all the states are localized if
F - 2B. This discussion is presented pictorially
in Fig. 1 through a sketch of the average density
of states per atom Q(E)) for three different val-
ues of the parameter 1 .

%e wish to acknowledge fruitful discussions
with Ka.rl Freed.

FIG. 1. Sketches of the average density of states per
atom (n(E)) for three different values of the half-width
I' of the Lorentzian distribution of single-site energies.
The mobility edges +E~ separate regions of localized
states (shaded) from those of extended states, and al-
ways lie within the interval f-E~', E~']. 1 is Ander-
son's critical value of the randomness.

Observing that

ln
~
G(E) (

= —,lim [lnG(E +is) + inG(E-is) ],

s —(E 2 P2)1/2 (14)

The mobility edges M, always satisfy the rela-

and using a trick similar to that of Lloyd, "one
can prove that (11) holds for the Lorentzian case
with Q (E) =is(E)I', where s(E) is I if lmE & 0
and -1 if lmE & 0. Thus in the Lorentzian case
E(E) is given by

F(E) —E /(Es ~ I 2)1/2

and consequently all the eigenstates for ~E ~
&E, '

are localized. +E,' are given by E(M, ') =1, i.e.,
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