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Complex Regge Poles in the Cut j Plane: Pion-Nucleon Charge-Exchange Scattering~
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The structure of the pole-cut combination in ~N charge-exchange scattering for f;- 0
is represented by a pair of complex poles. Excellent fits to the ~N charge-exchange dif-
ferential cross section, polarization, and total cross-section difference o&(s p)-o&(m. +p)

are obtained for the two examples considered, Im~ =gv -t and Im~ =g. The phases of
the residues are allowed to vary and a zero in ImA'( ) (the "crossover" zero) is obtained.

Within the past few years a substantial amount of theoretical and experimental evidence has been
accumulated which indicates that cuts in the angular momentum plane are important. It is generally
recognized that such Regge cuts arise from the combination of two or more Regge-pole exchanges,
that the dominant cut in a given channel results from the combination of the dominant Regge pole in

that channel and the Pomeranchon, that the cuts lie along the negative real axis to the left of j = I, and

that the collision of a pole and its dominant cut occurs at some t in the neighborhood of t = 0. However,
unlike the situation in the energy plane, the precise nature and the magnitude of the j-plane singulari-
ties are unknown. In fact, one does not even know whether, for t &0, a t-channel Regge pole lies on
the physical or the unphysical sheet of the j, plane. It may be noted that in the energy plane the (res-
onance) poles are on the unphysical sheet because of the causality principle. No such principle helps
in the j plane.

There have been several models proposed to describe Regge cuts. To name some of them, there
are the Amati-Fubini-stanghellini, ' the multi-Regge, ' the Regge-eikonal, ' the absorptive, ' the Gribov-
Migdal, ' and the Carlitz-Kislinger models. ' Under various approximations the singularity at the
branch point in the above models is logarithmic except for the last one where it is square root. The
difficulty in all these models is that of correctly implementing unitarity conditions at high energies.
It is quite conceivable that if and when this difficulty is removed, all or some of the models may turn
out to be different approximate versions of the same basic theory. Nevertheless, as things stand now,
we are faced with different models with different predictions.

It is, therefore, of interest to discuss Regge cuts within a formalism which is free, as far as pos-
sible, of any ad hoc assumptions associated with any specific model but which, at the same time, in-
corporates all the basic consequences of the cut j plane. Recently Kaus and Zachariasen' have noted
that the existence of a pole in a given sheet generally implied poles in all the sheets and thus they
have shown that as a Regge pole on the physical sheet moves towards the branch point, when t is de-
creased below the t-channel threshold, one of two things happens: (a) It is met by a pole which comes
from the nearby unphysical sheet through the branch point, and the two then continue their motion in
the physical sheet as a complex conjugate pair; or (b) the pole goes through the branch point and
meets the pole in the nearby unphysical sheet, and the two then continue to move in the unphysical
sheet as a complex-conjugate pair. At high energies, then, an amplitude, in the case (a), is repre-
sented by the pair of complex-conjugate poles plus the cut, whereas in case (b), it is represented by
the cut alone.

Furthermore, Ball, Marchesini, and Zachariasen' have shown that the cut contribution itself can
be well approximated, from moderate to rather high energies, by a pair of complex-conjugate poles
alone. The positions of the poles are identical to the poles discussed above, and they have complex-
conjugate residues that depend on the strength of the cut. Thus one can express a given amplitude as

(I wa+) y (I (K
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where the signature factor has been explicitly taken out and

n+ ——o.'*=Rem il+me y+ ——y *= (y~e'~.
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For case (a), y, is a sum of the contributions from the (physical sheet) poles and the cut, and for
case (b), y, contains only the cut contribution. Models for n, (t) are discussed in Ref. 7 in terms of
t- and j-plane analyticity. They differ primarily by the number of sheets in the j plane (ranging from
two' to infinity'). Regardless of the number of sheets (and therefore poles), n, refers to the complex-
conjugate pair nearest to or on the physical sheet. In this sense the approximation (1) to the full cut
contribution does not depend on the details of the branch-point singularities in the j plane, even though
the detailed behavior of Q, does. '

%e would like to Inake a few comments about the phase y of the residue y defined above. It was re-
marked in Ref. 8 that if the complex pair of poles was on the physical sheet, it was not possible to
predict the phase of the effective residue. However, it was also noted that if the poles were on the
unphysical sheet~ and if the %"eight function of the cut wel e smooth ln the neighborhood of g = A~, then
the phase could be calculated in terms of other parameters [see Eq. (9) of Ref. 8]. If, on the other
hand, the weight function is rapidly varying —for example, if it has a zero near j=a~—this argument
fails. In this more general situation we may write the usual Mellin tranform {suppressing the signa-
ture factor) of the amplitude as

Imf(t, j)s' " ~
"

.„s'
(j n.)(-j-n-) --.-. " (j-n+)(j-n )

" d lns, „(j-n+) (j-n ) '=pa„

assuming a power series expansion of the weight function, Imf(t, j). Over the range where the inte-
gral can, as in Ref. 8, be approximated by a pair of complex poles of the form p+s ++ p s, the
derivativesin the equation can be carried out to obtain

f Im t j s'
dj . '. =Imf(t, n,)p,s"' Imf(t, n )p s

(j-n.)(j-n -)

But now the function Imf{t, n, ) has a phase which is unknown so that the overall phase of the coeffi-
cleIlt of s + ol' s ls unk110WI1 evell tllollgll tllR't of P+ Rnd P cRI1 lie cRlclllRted.

Since we believe it to be quite reasonable for a rapid variation to occur in Imf —for example, that

Imf has a zero near j = nII we ha—ve permitted the phases to be arbitrary. Thus the phase p in the ex-
pression (2) above will be arbitrary.

An important fact to note about expression (1) above is that the signature factors in the two terms
are not complex conjugates of each other while all other factors are. The phase of the amplitude,

therefore, has additional contributions besides that from the usual signature factor which depend on

IDlQ and p.
One also notes that spin-flip and spin-nonflip amplitudes will, in general, have different phases

even though they may have the same n, . This is because the corresponding y's will be different.
Thus in such cases the polarization will not vanish. Moreover, the phase of the amplitude can be such

as to make ImT vanish (the "crossover"-type zero) at a certain t value without requiring ReT or I T [

to vanish at the same point. Thus the difficulties with regard to factorization encountered in connec-

tion with the crossover phenomenon can be avoided.
%e have used the above model to describe &W charge-exchange scattering where only p is exchanged.

The relevant amplitudes here are &' ~ and &~ ~ which are parametrized as follows:

(I-e ""
) s "' (1-e " -) s

s1n&& + +o sin& +

I-e ""+ s ' ' I-e

(5a)

(5b)

y,„=h,e "~'(n, +1)e' +~, y,~=d,e ~'n+(n, +1)e' +s.

For n and q& we consider two cases: In case (i),

n, =a+bt+ig(-t)'", y, „= (-t)' '(y, +y,t), y, =7I(-t)'"(X,+~,t),

(5c)
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while in case (ii),

A+ = 0 + Sf + Zg, Q+~= 71(go+'/lf), ++8 =
TE(AO+)half).

Case (i) corresponds to a square-root singularity in o.'(t) in the f plane. For simplicity we have chosen
t= 0 to be the branch point. Case (ii) corresponds to a logarithmic singularity. These two types are
perhaps the most representative of the types of singularities we may expect to encounter. [The singu-
larity in the f plane of n(t), it may be noted, is related to the singularity in the j plane of the ampli-
tude. ]

We have obtained excellent fits to the» charge-exchange differential cross section and polarization
dRtR, Rs cRn be seen fI'0111 Figs. 1 RIld 2. Dill' fits fo1' tile totRl cl'oss-sectlo11 difference~ &1(& p)
-&,(&+p), are also very good. However, the fits are unable to reproduce what appears to be a sharp
break around PL, = 10 88V/C. More accurate data are obviously needed. The data we have used are
from Refs. 9, 10, and 11. We can obtain a zero in ImA' & (the crossover zero} but our results are
insensitive to its precise location. It can be varied between t = -0.15 and -0.5 BeV without signifi-
cantly affecting the overall X'. Even though it is known experimentally that the elastic differential
cross-section difference, d&(& p)/dt-do(& P)/d't, vanishes at t=-0.15 BeV', this does not necessarily
imply that ImA' should vanish at precisely the same point since, unlike the previous (real pole)
case~ we have add1tlonal phases 1nvolved 1n oui model Thus one will have to re-examine the cross-
over phenomenon for elastic scattering with complex poles for P' and, perhaps, for I' as well. For
R zel'0 111 IInA R,'t f = -0.25 B8V tile parameters Rl'8 Rs follows. Ill cRse (1},

a=0.53, 6=1.02Bev ', g=0.20Bev ', I,=0.65mb Bev, I,=-0.31Bev ',

y, =-1.40 Bev ', y, =-0.80 BeV ', d, =27.2 mb, d, =-0.49 BeV ',
A.o= -0.28 BeV ', A. , = o.72 BeV

in case (ii),
a =0.50, b =0.95 BeV 2, g=0.088,

~, =1.08BeV ', d, =28.8mb, d', =-0.82Bev ', X,=-0.16, X, =0.66Bev '.
In all fits, the scaling parameter +» was fixed at 1 HeV'.

Within experimental errors we are unable to say which of the above two cases 1s better. The most
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FIG. 1. Complex-conjugate Begge-pole fits to the mN charge-exchange differential cross section, polarization,
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FIG. 2. Same as Fig. 1, but for case (ii) of the text.

characteristic difference in the two cases lies in their predictions for the polarization at very small
-t. Case (i) gives the behavior (-t)' ', whereas case (ii) gives ( t)"' F-urthe. r experiments as well
as other checks (such as finite-energy sum rules) may help in distinguishing the two cases.

The complex-pole approximation to the cut is presumably very good in the energy region under dis-
cussion and, therefore, it would be almost impossible to distinguish between the case where the Regge
poles are on the physical sheet and when they are on the unphysical sheet. However, at extremely
high energies where the approximation breaks down, the cut contribution will behave as s ~/(lns) and
one may then be able to understand the situation better.

It is worth emphasizing, incidentally, that even if Imn-o, as is the case with the absorptive model,
the energy dependence of the pole-eut combination is like», in the moderate-energy region, not like
s ~ (where o'. , is the branch point). This is so because even when the pole lies on the negative real
j axis, the arguments used for complex poles in Ref. 8 are applicable here. Thus, earlier attempts
to fit the data with Regge cuts behaving like s & are not correct unless the energy is extremely high,
regardless of the size of Imm.
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