
VOLUME 25, NUMBER 18 PHYSICAL REVIEW LETTERS 2 NovE~BER 1970

Orbital Paramagnetism of Localized Nonmagnetic Impurities in Metals*

Lowell Dworint
Physics Department, Northeastern University, Boston, Massachusetts 02125

Albert Narath
Sandia Laboratories, Albuquerque, Nezo Mexico 87115

(Received 26 August 1970}

The importance of orbital paramagnetism in a weakly exchange-enhanced dilute solu-
tion of transition-metal impurities in a nonmagnetic host metal is demonstrated both
theoretically and experimentally. It is shown that the orbital and spin contributions to
the nuclear resonance shift and relaxation rate separately satisfy a Korringa-like rela-
tion. These relations may be used to determine uniquely the individual contributions.
The sensitivity of the analysis to crystal-field effects is discussed.

Discussions of the magnetic properties of paramagnetic impurities in metals have traditionally fo-
cused attention on the locally exchange-enhanced spin susceptibility. In this Letter we demonstrate
theoretically as well as experimentally that the orbital paramagnetism is, in many cases, of compara-
ble magnitude. This result is of particular importance for the interpretation of impurity nuclear-mag-
netic-resonance (NMR) experiments because of the relatively large magnitude of the d-orbital hyper-
fine fields (Hh&,

~" }) relative to the d-spin (core-polarization) hyperfine fields (Ph&,
' }). We consider

the nonmagnetic regime where the impurity can be discussed in terms of a Hartree-Fock treatment of
the equilibrium properties and a random-phase approximation (RPA) treatment of the transport prop-
erties. This leads to the conclusion that a measurement of the nuclear resonance shift E and the spin-
lattice relaxation rate (T,T) is sufficient to determine both the orbital and spin contributions. More-
over, this separation is invariant to first order in the cubic crystal-field splitting. Our principal con-
clusions are supported by results of NMR measurements on "¹iimpurities on copper and gold.

We shall base our discussion on the following (modified) Anderson Hamiltonian':

BC=pe„,c„c~,+ g sn„, +Q (V„c~,c +c.c.)+ —Q n, n ~,+ Q n, n .,U-J

-2Z Q c c,c, c .,+22 Qn, n, c+rystal field,
m&m', a

where, for the case l =2 (the only case we shall consider in detail), the sums over m and m' go from
-2 to 2. This Hamiltonian, with the exception of the last three terms, is the one suggested by Ander-
son. It was recognized by Caroli, Caroli, and Fredkin that the Anderson Hamiltonian is not invariant
under a rotation in spin space, and to correct this they added the sixth term in the Hamiltonian. This
term, however, is not invariant under a rotation in coordinate space, and we have therefore added the
seventh term to restore full rotational invariance.

The orbital susceptibility at frequency ~ may be expressed in terms of an effective orbital density
matrix S(m„m, ; &), just as the transverse spin susceptibility was expressed in terms of an effective
spin density matrix S(m„m2; 0) in Ref. 2:

xorb(~) 9B' 5 l &~,'l ~'lnt, )l's(m„m„' &),
ml, m2

where S(m„m, ;0) satisfies the Bethe-Salpeter equation,

S(m „m, ; &) = X (m, m, ; &)[1+(&-&)S(m„m, ; &)].

(2)

Equation (2) is valid for any crystal-field representation such that the orbital angular momentum op-
erator I- has vanishing diagonal matrix elements. X (m„m, ; &) is the generalized unenhanced suscep-
tibility given by

X (m„m2', &)=(2mi) ~f d(uf((u)1[G (m, ;(u) —G (m, ;(u)]G (m2;(v+0)

+ G '(m, ', ~ -&)[G '(m„. &u) —G '(m, ; &u)] ],
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where f(&u) is the Fermi function and G ')(m;; ~) are the Hartree-Fock Green's functions:

G "i(m;; (u) = [k(u —E(m;) + i&(m;)] (5)

[where E(m;) and b (m;) are the resonance energy and width of the ith orbital state, respectively], from
which the occupation probabilities may be obtained:

(n(m;)) = (i/2m) f d(of((u)[G'(m;; su) —G'(m;;(u)].

The corresponding expression obtained in Ref. 2 for the transverse spin susceptibility is

X.(Q) =2u ' Z S( „.;Q),
mi, m2

where S(m„m, ; Q) satisfies the Bethe-Salpeter equation

S(mz, m2; Q) =go(m&, mi; Q)[5 + US(mi, m2; Q) +J QS(mz', m2; Q)].
'lay

We may solve Eqs. (3) and (8) and substitute the results into Eqs. (2) and (7):

( ),~ i(m, iL'im, )i'y'(m„m„Q)
1—(U-J))f'(m„m, ; Q)

and

X.(Q) =2@ '~(Q)/[I-J&(Q)],

where

A(Q) =gq'(m„m, ; Q)[I-Uqo(m, m, ; Q]-&.
mg

(6)

(8)

In the absence of crystal-field effects [E(m;) =E; 4(m;) = b, for all i] we find, from Eqs. (9) and (10),

and

lim Rey, „q(Q) = 4p„p, ,'/[ 1—z (U-J)pd],
Q~p

lim Im)t„b(Q)/kQ = 4vp, 'p, ,'/5[1--', (U-J)p„]',
Q~p

lim Rey„(Q) = 2p„p, g'/[I -—', (U+ 5J)p, ],
0~p

ijm lmx (Q)/KQ = 2', 'p, a'/5[1 ——', (U+ 5J)p„],
Q~p

(13)

(14)

(15)

where p~—= 5(b, /w)(E'+ 6') ' is the total impurity-state density at the Fermi surface per spin. (The
orbital enhancement factor [1——', (U—J)p~] ' has also appeared in the work of Anderson' and of Yosida,
Okija, and Chikazumi. j It is interesting to note that the static orbital susceptibility [Eq. (12)] is di-
rectly proportional to the density of states p„as is the case for the spin susceptibility. This similari-
ty between g„b(0) and y~(0) is a. unique property of an isolated paramagnetic impurity in a metal. In

pure metals the translational invariance completely removes the orbital degeneracy except at certain
symmetry points in the Brillouin zone; the resulting Van Vleck susceptibility is, of course, unrelated
to p~. Another interesting feature of our results is the appearance of the term (U+ 5J) rather than the

usual (U+4J) in the spin-enhancement fa.ctor [Eqs. (14) and (15)]. This difference is a direct conse-
quence of the last term in our Hamiltonian and can be eliminated by redefining our interaction parame-
ters according to U- U —(J/6) and J- 5Z/6. However, our formulation of the problem has the advan-

tage that if U and 4 are required to satisfy the Slater sum rules,

U i = 5E(0)(=5U+ J),

Q J =F + (2/7)F + (2/7)F (=U+ 5J), —

we find that the additional sum rules

= 5F "'+ (2/7)F "'+ (10/63)E '",

(16)

(17)
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and

Q U „.= IOF -(I/7)F -(5/63)E 4,
m)rn'

are much more closely satisfied than is the case for the Hamiltonian used in Ref. 2. Incidentally, if
this method is used to define U and 7, we obtain U+ 5J—= U+ 47 and U —J—= U —7. Finally, we note that in
the limit of zero enhancement y„&(Q) =2~(Q). However, since U+5J is always greater than U —J', the
ratio y„(Q)/y„~(Q) can presumably become quite large as magnetic instability is approached.

The nuclear Knight shift and relaxation rates may now be obtained':

K =K(„)+Z(„b),
2 1

T& = T&(y) +T&(orb)

(18)

(19)

where, for i=-d or orb,

K«, -(p, , ) 'H„«" lim Rey;(Q),
0 p

(T~T)(;) ——2(p, B) 'y„'k~HQfg ' lim imp;(Q)/Q.

(2o)

(21)

We note that K, is typically negative, whereas K„q is always positive. From Eqs. (12)-(15) we see
that the spin and orbital hyperfine mechanisms separately obey Korringa-like relations

(K TiT)„~ 10$, ——

(K TiT)~ = 5$,

where

$ -=(y,/y„)'(h/4m', ).

(23)

(24)

Before proceeding with a consideration of the relevant NMR data we wish to examine the sensitivity
of the above results to cubic crystal-field effects" which we characterize by an energy splitting 10D
as well as a difference in the resonance widths 54. Thus

n(e, )= N ~x, n(t„)=hN+~x;

Z(e, ) =Z+-', R, Z(t„)=E-~2R;

Z(e, ) =t +-', 6t, a(t„)=t -26t;
where N is the total occupation number and

R = E(e~)-E(t„)=1-0D+ (U 2J')x. —

(25)

(26)

(27)

(28)

Equations (25)-(27) may be solved, to lowest order, by differentiating Eq. (6) with respect to E(m;)
and &(m;) and solving Eq. (28) for x. We find

x = n(e )—n(t2 ) =p„[10D-64cot (~'0¹)]/5[1 —~5 (U-2J)p~]. (29)

(30)

Likewise, by differentiating Eq. (4) with respect to E(m;) and 4(m;) and integrating the resulting ex-
pression by parts, we find, using Eq. (29), the first-order contributions (i, j=-e, t,~)

lim Rehgo(i, j;Q) =p„/104[1--', (U-2J)p~]([ 1-2 sin'(hNn')+ ~(U —2J)p„](6b;+6h, )
Q ~0

-2 sin(~¹)cos(~Nm)(6e, + 6e, ) ]

limIm .
' ' =-', wp~limReby (i, j;Q),

6X'(i, j;Q)

0~0 o

where be(e, ) = ~5 (10D), 66(e,) = -', (64), etc. Inserting these expressions into the equation

by, &(Q) = 4p, ~ [46S(e, t2; Q) + OS(t2, t2~; Q)], (32)
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obtained by explicit evaluation of the matrix ele-
ments of I-', we find

lim Re6y„b(&) = lim Im6y„b(&)/(5&) = 0. (33)

Similarly, we find 6A =0. Thus, to first order in
a cubic crystal field, represented by an energy
splitting and a difference in widths, both the or-
bital and spin susceptibilities are unchanged.

For very strong cubic crystal fields the analy-
sis is very simple for the two cases of pure e~ or
t„character at the Fermi level [i.e. , &(t„) or
b, (e )-0]. The e~ solutions for the orbital and

spin Korringa, relations, Eqs. (22) and (23), are
~ and 23, respectively; the corresponding t„sol-
utions are 2S and 3S. For intermediate values of
the e,/t„admixture ratio both the spin and orbit-
al Korringa relations are dependent upon U and

4; however, as either spin or orbital instability
is approached, the corresponding Korringa prod-
uct approaches one of the limiting values dis-
cussed above. Thus, strong cubic crystal fields
can in principle have a large effect only on the
orbital Korringa relation. Since crystal-field
splittings for impurities in simple metals are be-
lieved to be small compared with typical level
widths, this complication can presumably be ig-
nored in most instances.

Examples of dilute alloys in which the orbital
hyperfine interaction plays a dominant role are
provided by Cu:Ni and Au:Ni. The nickel d states
in these alloys are believed to form narrow virtu-
a,l levels containing -9 electrons. That the levels
are almost fully occupied is supported by the rel-
atively small electronic specific heat of Cu:Ni (y
= 2.9 mJ/g atom 'K'). ' Exchange-enhancement ef-
fects are therefore most likely also small. The
orbital mechanism is further favored by the large
orbital hyperfine field of nickel, whose free-atom
value of 716 kOe/p B may be compared with the
usual d-spin hyperfine field of only ——100 kOe/p B.
%'e have studied the "Ni NMR in these alloys in
the temperature range 1 to 4'K and in external
fields near 60 kOe using a phase-coherent spin-
echo spectrometer. The experimental resonance

shifts and spin-lattice relaxation times are sum-
marized in Table I. The shift and normalized re-
laxation rate (y„'T,T) ' exceed the pure copper
values by factors of -5 and -9, respectively. It
is obvious that the direct s-contact interaction
cannot account for these results. In fact, on gen-
eral grounds one expects this mechanism to be
unimportant for paramagnetic impurities relative
to the d-electron mechanisms. Since the observed
shift is positive we must attribute it to orbital
paramagnetism. By using Eqs. (22) and (23) we
are able to partition the shift in Cu:Ni into d-or-
bital (K„b—-+1.6%) and d-spin (K„=—0.3%) contri-
butions. Furthermore, assuming the II h~,

" giv-
en above, we conclude that a susceptibility y„b
=1.2 &&10 ' emu/g atom is required to account
for the +1.6% orbital shift. This compares with
the specific heat value y„b y=0. 8 &&10 emu/g
atom. Thus, provided that mass-renormalization
effects are unimportant, an orbital enhancement
factor of 1.6 is indicated which in turn implies
U —~= 3 eV. Similarly, assuming II hfs

——-100
kOe/iL B, we obtain U+ 5J = 6 eV. We note that the
same analysis can account for the ' Co NMR data
in Cu:Co, for which Asayama, Wada, and Oda'P

observed positive resonance shifts and rapid re-
laxation rates. Although the Au:Ni data again in-
dicate the importance of the orbital hyperfine
mechanism, the relaxation rate appears to be
somewhat slower than predicted by Eq. (22).
This may indicate an enhanced e~ admixture at
the Fermi level. Unfortunately, the experimen-
tal uncertainty in the Au:Ni relaxation rate is too
large to allow more definite conclusions to be
drawn at this time.

We conclude that orbital paramagnetism plays
an essential role in weakly exchange-enhanced
dilute alloys. Furthermore, since the limiting
values of the orbital and spin Korringa relations
are independent of U and 4, it appears likely that
their validity extends over a much wider range of
exchange enhancements than is the case for the
RPA susceptibilities from which they were de-
rived. The present work therefore provides the
necessary basis for obtaining reliable estimates

Table I. Summary of Ni NMR data for concentrations c as indicated. The
shifts are defined relative to the reference v/H = 0.38048 kHz/Oe.

C

(at. k)
Tf7

(sec'K)

Cu: Ni
Au' Ni

0.5, 1.0, 2.0
1.0

1.2(1)
1.0(3)

+1.28(2)
+2.55(2)
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of the xelative magnitudes of d-orbital and d-spin
hyperfine interactions in dilute paramagnetic al-
loys.
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Measurements of the electrical and thermal resistivity in longitudinally saturated (111)
iron crystals provide evidence that the temperature-dependent transport is dominated
by electron-electron scattering from 0.28 to 20 K. The ideal Lorenz number is nearly
constant below 40'K and has a value of 1.09 x10 8 W 0/deg from 40 to O'K and a value
of 1.16x10 W n/deg below 6 K.

We have measured both the electrical and
thermal resistivity of ix'on single crystals in
the range 2 to 77'K. In addition, electrical resis-
tivity has been measured down to a temperature
of Q. 28'K. Measurements have been carried out
in zexo magnetic fields and in applied longitudi-
nal magnetic fields up to values sufficient to
saturate the specimen as a single domain along
the measuring length. Specimens with both (100)
and (111) axial orientations have been used with
ratios B(295'K)/R(4. 2'K) between 700 and 2000.
The data reported here are limited mainly to
the (111)axial orientation in the single-domain
saturated, state.

Our measurements have indicated that the sin-
gle-domain (111) crystals give the most repro-
ducible results on the temperature dependence
of electrical and thermal resistivity. Measure-
ments in the multidomain state show large mag-
netic contributions which alter substantially both
the magnitude and temperature dependence of the
transport and make the interpretation of results

complex.
Hexring' has given a theoretical analysis which

suggests that for transition metals with complex
Fermi surfaces and in which electron-electron
scattering dominates the temperature-dependent
transport at low temperature, the ideal I orenz
number (I., =p;/W, T) should reach a constant
value at low temperature equal to 1.58&IQ ' W
Q/deg'. (This number is the corrected number;
see Erratum, Ref. 1.) p; and W, are the intrinsic
electx'ical and thermal resistivities, respectively.
White and Tainsh' have reported data on nickel
which tend to support this prediction for a mag-
netic transition metal. A number of experi-
ments' on nonmagnetic transition metals also
provide evidence that this prediction may have
general validity although the exact value of the
I orenz number may depend somewhat on the
particular metal.

The data reported here for single-domain
longitudinally saturated (111) iron crystals ap-
pear to indicate that Herring's prediction may


