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FIG. B. Temperature dependence of the ratio (V~

-&„)/V„[Eg. (8)1 for an indium specimen.

should be directed to a model in which the activa-
tion volumes change. Since the pinning mecha-
nism for dislocations by obstacles must be at
least partially electrical in nature it is perhaps
reasonable to expect that the activation volume
should change with electronic configuration at
temperatures below T, in the superconducting
state but remain constant in the normal state.

Preliminary experiments on lead indicate that
a similar behavior is found in this case, and we
hope to report on this shortly.

We are indebted to Professor S. Sairnoto of
Queen's University, Kingston, Ontario, for help-
ful dis cussions.

In a separate series of experiments we varied
the strain rates over a factor of 200 and observed
no significant dependence of difference in flow
stress o„-a, on strain rate, thus confirming the
observation made by Alers, Buck, and Tittmann. '

The results of these experiments thus imply
that, in looking for an explanation of the observed
changes in flow stress between the normal and
superconducting states in a metal, attention
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We propose as a model of some amorphous semiconductors a system with undulations
in composition or structure on a scale within the range of validity of the graded band-
gap concept. Electronic states. well within allowed bands are determined by perturba-
tive analysis; states near band edges, by a modification of an effective-mass analysis.
Localized states are obtained and the band edge identified as the locus of classical turn-
ing points of the effective mass functions.

The theoretical analyses of electronic structure
of amorphous solids have been previously based
on models involving only short-range order. '
These analyses have predicted insensitivity of
electronic properties to doping' and absence of
an energy gap, replaced by a mobility gap. ' The
observed optical properties do not for some ma-
terials support the latter' and exceptions to the
former have been reported. ' There is experi-
mental evidence that some amorphous solids are
characterized by structural and/or composition-
al inhomogeneities on a scale of approximately
100 A." This scale is just within the range of

validity of the concept of a graded band gap, s and
we therefore propose a model amorphous semi-
conductor involving intermediate-range order on
the scale in which substance A smoothly grades
to substance B, not monotonically as with the
usual graded band-gap system, but undulating in
composition with a mean period of the order of
100 A. A and B may be different substances or
different structures of the same substance.

The theory of graded materials employs the
virtual crystal approximation on a local basis
where the potential from the statistical distribu-
tion of constituents A and B at position r is re-
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placed by the potential for the average unit cell
at P weighted for atomic composition„With unit
cell potentials V„(F) and Vs(r) respectively, the
Hamiltonian is written

2
a= — ~'+ V,(r-)+ [V„(r-)-V,(r-)]f(r-),

where f(r) is the atomic fraction of constitutent
A. To facilitate the analysis we assume that
V„(F) and Va(P') have the same lattice periods
although for real materials this will not in gener-
al be so. The approximations of the theory of
monotonically graded semiconductors were shown
to remain valid for the distance over which f
changes from 0 to 1 being 10' lattice distances. '
Since the data on amorphous semiconductors in-
dicate order on a scale of approximately 100 A,

0
i.e., globular morphology on a 100 A scale, we
conclude that a similar analysis is applicable.
We have considered several forms of f(r); the

following will be used for extended electronic

states here:

f(~) =f(x) =+,.2[1+a,eos(2@x/d, )] (2)

with the d,. of the order of 100 A and the a,. re-
stricted by the condition 0 & f(x) & 1. For localized
states we shall treat a three-dimensional grading
with a single d.

For the extended state problem, we solve the
Schrodinger equation perturbatively since the
term !V„(r)-Va(r)! is small compared with

!Va(r)!. This would be expected to work well for
states away from the band edge of the unperturbed
system, where ! V~(r)-Va(r) (,is also small com-
pared with the eigenvalue E. In the perfect B
crystal, which is the unperturbed system, the
idea of a band edge is clear but the idea of an
E vs k curve having extrema in an amorphous
material is not clear and a new definition of a
band edge will be presented. From perturbation
theory starting with Bloch states of the B crystal,
expanding periodic factors in Fourier series of
reciprocal lattice vectors, and relating k' to k

and 0 through the resulting ~ functions, we obtain

j
+(f') =ae'"' +Q P,. exp[i(k+8. ) r]+Q y,. exp[i(k-F ).r],

i=1 i=1

where

o. =u„g(P)+ —', P, ' ' ",=- tu„,~k(r)u„gr)[V„(r)-Va(r)]d'~, (4)

y, (k, o,.) =P,.(k, f,.),

o, r =2nx/d,

Here the u„g&P') is the periodic part of the Bloeh
function. To get some idea of what these wave
functions look like, we assume that the interband
contributions are small because of the size of the

energy denominators and examine the contribu-
tion from the intraband terms. The contribution
from these terms will be smallest for a typical
band structure in the middle of the band since
there the difference E„'(k)-E„o(k+o,.) is largest.
At lower k values the difference E„'(k )-E„'(k+o,.)
is smaller so the contribution from the perturba-
tion terms is larger assuming the integrals do
not vary appreciably with k value. In the limiting
case of a single d, as the amplitudes P and y in-

(6) crease the plane wave part of the wave function
acquires a modulation with a wavelength d. The
k values spoken of here are values acceptable in
both the perfect A and perfect 8 crystals and

correspond to energies large enough to avoid con-
flict with comparison with [V„-Va], see Fig. 1.

In this model the possibility exists for having
electronic particles localized by the composition
fluctuations when the material of smaller band

gap acts as nuclei for the globules and the rnate-
rial of larger band gap forms the matrix. We
choose as an example a modification of Eq. (2)
with a three-dimensional radial grading and a
single d. To obtain an analytical solution we
make the following mathematical simplification
and inquire about its physical justification. We
expand ocs2mr d/to get [1-2m'r'/d'] which is a
good approximation for x & 20 A since d -100 A.
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where

(12)

CL
IJJ
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Fv(s)

Similar to the analysis of Ref. 8 we go to a Wan-
nier representation and we then take the case for
which the effective mass is not position depen-
dent. This leads to an effective-mass equation

(8)

where

We emphasize that &„ is dependent ori band iden-
tity so that the effective potential of the oscilla-
tor is band dependent. Also, of course, ' m'„* is
band dependent. The effective-mass function
E„(P') enters the wave function through the equa-
tion

O(P) = Q r„(T')a„(P'-T),
n, &

(10)

where the a„(r-T) are Wannier functions of band
n at site E. In the approximation that only one
band contributes to 4 and that the k dependence
of u„Q&r) can be neglected the above wave func-
tion can be written

+(r) =u„,(r)r„(r).

In Eq. (8) a separation of variables can be accom-
plished which leads to three simple harmonic
oscillator equations in the variables x, y, and z
with the same force constant. This yields for

P0S IT Io N

FIG. 1. Schematic representation of modulated plane-
wave part of wave functions for extended states (top
curve, well within conduction band), effective-mass
functions for localized states near conduction band
edge E, Qr, effective-mass functions for localized
states near valence band edge E„gr, and position-de-
pendent band edges (shown dotted) with position-depen-
dent energy gap designated Four.

5'=( /Sd)[A„„*/2]'/',

~ —[s/@g] 1/2[2' ~ g] 1/4

C is a normalization constant, and II,. are the
Hermite polynominals. Incidentally we have ver-
ified, for a reasonable choice of matrix elements
[Eq. (9)], stability of localized electrons or posi-
tive holes against both thermal activation to ex-
tended states and tunneling between globules. A
discussion of this verification will be given else-
where.

From Eq. (12), a definition of a. band edge can
now be made as follows: It is the locus of points
where damped solutions have decreased to a pre-
scribed value; specifically, the edge can be iden-
tified as the locus of the classical turning points
of the effective-mass functions. This definition
is similar to the one adopted in discussing the
monotonically graded semiconductor, ' see Fig. 1.

We emphasize that the theory of amorphous
semiconductors just described is in a prelimi-
nary form and that its limitations and conse-
quences have not yet been fully revealed. No
ad hoc assumptions are made to introduce states
in the band gap. Modulated Bloch states well
within allowed bands and localized states near
band edges arise quite naturally. The undulatory
band edges are identified as the loci of the classi-
cal turning points of the effective-mass functions
of the localized states. The effective potential
for the effective-mass equation is clearly differ-
ent for the different bands. It is not yet certain
as to the absolute lowest scale of inhomogeneity
for which the model and analyses remain valid:
The virtual crystal approximation, effective-
mass theory, and the graded band edge are all
expected to become quantitatively in question for
a scale somewhere below 10' lattice distances or
about 10' A, however, the qualitative results of
the model and the analyses may remain valid to
a somewhat lower scale. The model and the
analyses herein appear to account for many of
the gross electrical and optical properties of
some amorphous semiconductors. We defer until
a later publication a full discussion of what prop-
erties are accounted for but indicate here that
these include the following: (1) The possibility of
sensitivity of electrical properties of amorphous
semiconductors to doping is built into the undula-
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tory gx'Rded model, in contrast to the traditional
model; local symmetry (within the virtual crys-
tal approximation) is high so that doping is not
locRlly compensated fox' by chRnges 1n cool d1nR-
tion number. (2) A close relationship between the
band gaps of crystalline Rnd amox'phous semicon-
ductox'8 of the same composition and coordination
number is evident from our model. (3) Nonlinear
current-voltage characteristics ax"e predicted;
for example, for those systems with the troughs
for the band edge of majority carx'iers in the
nuclei. of the globular structure the current will
be limited by tunneling or by thermal activation
at low fields; at lllgll fields, i.e., 10 Vjcm, tl1e

crests of the band edge (the locus of the turning
points of the effective-mass functions of the total
effective Hamiltonian including the applied fields)
will be wiped out. In fact, the nonlinear current
observed before switching of amox phous chalco-
gen1des' can be 1nterpreted as f1eld-ass1sted
thermally activated carrier transport with a
characteristic jump distance of approximately
100 A.

%6 also emphasize that it is not yet clear to
which 16Rl amorphous materials the model 18

RppllcRble. As noted eRx'1161 we assumed ln the
analyses that V„(1) and Vs(1) have the same lat-
tice constants. For real materials the lattice
constants will be different, however, the effects
on electronic structure of compositional or Struc-
tural inhomogeneities on a scale within the range
of validity of the graded band gap concept is be-
lieved to be the same for these Rs for the case
analyzed. The same simplification was earlier
used with monotonically graded materials. ' With
undulatorily position-dependent lattice constants
diffraction pRttex'ns quRlltatlvely similar to those
obsex'ved fol amorphous materials Rre expected.
Our model does not rule out othex types of dis-
ordex contributing to the electronic structure of
amorphous materials; the model analyzed clearly
isolates the effects of globular structure from
the effects of more local disorder, for example,
broken bonds. Also effects of inhomogeneous
space charge distributions arising either from
abrupt heterojunctions between phases or from
inhomogeneous doping with charged dopants are
obviously not included. In general, we believe

that any interpretation of electronic properties
of IIlat611Rls with composltional or structural
inhomogeneities on a scale within the range of
validity of the graded band-gap concept must in-
clude the effects herein described Rnd that some
of the phenomena previously attributed to other
types of disorder in such materials arise i'
whole or in part from these inhornogeneities. In
addition to the materials cited in the preceding
references we note that there is experimental
evidence for ordinary glRss having compositional
inhomogeneities on a scale of 100 to 200 A."
Inhomogeneities on a somewhat smallex scale
have been proposed for specific amorphous mate-
rials, for example, "amorphons" in germanium
and "vitrons" in vitreous silica. " The applica-
tion of the theory to specific properties of partic-
ular materials will be described elsewhere.
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