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Velocity Correlation Functions in Two and Three Dimensions
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Velocity correlation functions p {t) in hard-disk aud hard-sphere fluids are discussed
on the basis of the kinetic theory of gases. It is found in d dilnensions that p(t) o'. g/
to) "~ with o =0{pe ) {t'0 I=collision frequency; p =reduced density). Expressions for
e are given that seem correct at low densities and a good approximation at least up to
half the close-packing density. The agreement with Alder and Wainwright s computer
results is good.

The revived interest in the long-time behavior
of time correlation functions has been stimulated
by recent computer calculations by Alder and
Wainwright. ' They determined the long-time be-
havior of the velocity autocorrelation function for
a hard-disk and ha1d-sphex'e flu1d ovex' a wide
range of densities. Their main x esults are the
following: (a) The function

pP'(t) =& .(0) .(t)&/&~:&-~."'(tif.) " (I)

for 30 t, ~ t » t, . Here v „(t) is the x component of
the velocity of a particle at time t, t, is the mean
fl'66 tlnle between two successive colllslolls (ol'
the inverse collision frequency in the gas), angu-
lar brackets denote an average over an ensemble
of systems taken in the thermodynamic limit, and
d 18 tile number of dimensions (d = 2~ 3). (b) Ex-
pression (I) describes pD{')(t) over the entire
range of measured densities and times within
the experimental error. (c) The velocity distri-
bution ax'ouQd a. pax'tlele 18 not 1rl otatlonal but
shows a vortex pattern.

We investigated these results from the point of
view of the kinetic theory of gases. The starting
point 18 all expRn81011 of pa (e), 'tile LRplRce
transform of pD{')(t), in powers of the number
deQ81ty Pz:

po"'(~) =p~, '"'(6) +npD. "'(6) +

In Eq. (2) only terms relevant for a discussion
of the long-time behavior of p~~"~ are considered.
pz~~ ~ is the coQtributlon to pa ~ from sequences
of uncorrelated binary collisions and can be ob-
tained from the Boltzmann equation. This term
leads to an exponential behavior po{ I{t)-exp(-t/
t,). For t&t, the long-time behavior of pD{+ is
determined by p»~"~. This term results fxom a
summation of sequences of corx"elated binary col-
lisions (characterized by ring diagrams), which
are —in each order of the density —the most diver-
gent terms in a, density expansion of pp{")(e). It
is these same collision sequences that lea,d to
divergences in a computation of the transport

coefficients. '
Recently Pomeau' has concluded from a qualita-

tive analysis of p~, ~"~ that although this term ex-
ists in the limit e -0 in three dimensions, it di-
verges in this limit as inc, in two dimensions.
We 11Rve lllvesilgR'ted pD2 (6) 111 'tile SRnle llII11't

along a similar line quantitatively and find the
following: (a) In both two and three dimensions
the ring resummation leads to a p~2@~ with a time
dependence of the form found by Alder and Wain-
wright' and in two dimensions in good quantita-
tive agreement with their computer results over
the entire density range considered. (b) A simi-
lar behavior can be expected for the velocity cor-
relation functions p„" and pz~~ that determine
the kinetic parts of the coefficients of viscosity
and thermal conductivity, respectively. These
conclusions were arrived at in the following way.

(a) The expression for pn, ")(e) can be evaluated
in terms of the eigenfunctions and eigenvalues of
the linear inhomogeneous Boltzmann operators
for a gas of hard disks (or hard spheres) and for
the corresponding Lorentz gas. For small e the
behavior of p»{")(e) is determined by those com-
binations of the hydx'odynaxDlcal modes of the 1n-
homogeneous linearized Boltzmann operators for
the I.orentz gas and for the real gas that lead in
the expression for po,{")(e)to integrals of the
form

fdek{e+ ak')

for small k, where a is independent of k and c.
On inverting the Laplace transform p»{ )(e),
these integrals lead to the t " ' behavior for
pD~~)(t) for t »t, . While a Lorentz gas only has
a diffusion mode, a real gas has a heat mode,
two sound modes, and d-1 viscous modes.
These hydrodynamical modes can be obtained
for small k by a perturbation calculation from
the zero eigenvalue modes of the respective lin-
earized Boltzmann collision operators. To low-
est order in n and to order k', the perturbed ei-
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(d) (d) d -j. (d) d + (3)

genvalues are, for the Lorentz gas

~v =k'D, (d=2, 3),

and for the real gas

(u,"=k'il, /nm (i =1,d-. 1);

&us = k'l. ,/2nks for d = 2;

m„=2k'X, /5nks for d =3;

(e,'=sike. ':.k (iso/nm +1o/2nks) for d = 2;

~,'=+ikc+k (2rio/3nm +2ko/15nks) for d =3.

Here c is the adiabatic velocity of sound in an
ideal gas, k& is Boltzmann's constant, and g„
Ao and Do are the coefficients of viscosity, ther-
mal conductivity, and self-diffusion, respective-
ly, of a dilute gas. Using these eigenvalues and

the corresponding eigenfunctions, one finds that
the long-time behavior of pDt'i(t) is given by (1)
with
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FIG. l. un E /(Vo/V)" plotted as a function of
the reduced volume &0/V, where Vo is the volume at
close packing, for d=2 and d = B. The crosses indi-
cate the computer results of Alder and Wainwright for
d=2.

where p=na"; a is the diameter of a particle.
Here

a, ,'"=[8vnp(D, +q, /nm)t, ] '= —,

n, ,'"= [~p'"(D, +rI, /nm)t, ] '"/12n

= (64/11)'"/12 (3b)

if the first Enskog approximation to the coeffi-
cients of self-diffusion and viscosity of a dilute
gas are used.

One contribution to e~, " and the higher terms
in (3) comes from collisional transfer of momen-
tum and, in fact, equals the change in aD" that
would be obtained if the Enskog collisional trans-
fer contribution to g due to binary collisions
alone is added to go in nD, " .' In order to deter-
mine eD" further, an analysis must be made of
the contributions of the dynamical events be-
tween four, five, ~ ~ - particles, that are con-
tained in the higher-order terms in (2). The con-
tributions of a subclass of all these events has
been evaluated and leads, together with the col-
lisional transfer contribution mentioned before,
to an expression for o.o(" that can be obtained by
replacing qo and Do in nD 0" by their full values

gE and DE, respectively, as given by the Enskog
theory, viz. , to

n, ,'"= [8~n(DE+qE/nm)t, ]

o, ,&'i = [w(D, +il, /nm)t, ] '"/12n. (4)

o.a E" for d =2, 3 are plotted in Fig. 1; o.D p is

found to be in very good agreement with the avail-
able computer data for a fluid of hard disks.

We have not evaluated other dynamical events
that contribute to aD" . However, it is not un-
reasonable to suppose that their contributions
might be small compared with aD E" . This is in
view of the fact that in a number of cases (e.g. ,
the computation of the transport coefficients) the
Enskog contributions —which incorporate exclud-
ed-volume effects —are known to be dominant
among the contributions of all dynamical events. ' '
On the basis of hydrodynamical arguments Alder
and Wainwright' and also Ernst, Hauge, and
van Leeuwen" have derived expressions for ea"
identical to those given in (4) except that DE and

qE are replaced by the actual transport coeffi-
cients, D and q, respectively. " The two expres-
sions for na(" give virtually indistinguishable re-
sults for d =2 for all densities considered by Al-
der and Wainwright and are very close for d =3
for densities up to about half the density at close
packing.

(b) A behavior similar to that of pDi~ has been
found for the velocity correlation functions p„~
and p~(' that determine the kinetic part of the
viscosity and thermal conductivity coefficients
and which can be obtained from (1) by replacing
v„by

A'

gv, v, ,
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and by

g t, „(m. ~,'/2u, r-a, ("&/u,r),

respectively, where the summation includes a11 the N particles in the gas, T is the absolute tempera-
ture, m the mass of a particle, and It, " the enthalpy per particle in an ideal gas in d dimensions (h, '
=2t, r, a,&'& =5&,T/2).

One finds

((t) [~ (d)pu-x+. ..)(t/t )
-u/2

e„,("= [(q,/~) '+(q, /nm +),/2nu, ) ']/32spnt, =-,'

n„,('& = [7(2q,/nm) -'"+(4q, /3nm +4),/l5n~, ) -'~'] jl20 p'(st, )"'= l.05

and similarly fox pz~~~

o.~,(') = [7),/nm +X,/2nk, ] '/4wpnt, =—',

o, ,("= [(7),/nm + 2m, /5nk, ) '"+(4,/15nk, + 4t),/3nm) -»2/3]/l2np2(&t, )»2

This long-time behavior, (l), (5), of p &'&,

p„~@, and p„~"~ does not seem to be restricted to
hard disks and hard spheres, but to hold for
more general interparticle potentials as well, as
the present calculations can be generalized im-
mediately to more general potentials. The good
quantitative agreement of the theory with experi-
ment and the fact that the ring diagrams are re-
sponsible for the long-time behavior of pD(")(t)
obsex'ved in the AMer and Wainwright experi-
ments suggest that it i.s these diagrams that in-
corporate the correlated motions of the particles
that are responsible fox' the vortex velocity pat-
tern seen by Alder and Wainwright. Thus this
vortex pattern may not be restricted to hard-
disk or hard-sphere fluids but may be found in a
more general class of fluids as well. "

The long-time behavior of the p(t) discussed
here on the basis of Eq. (2) may only be correct
up to times t =30t„relevant in a typical machine
calculation of Alder and Wainwright. To deter-
mine their behavior on a longer time scale and
also to settle in two dimensions the question of
the existence of the transport coefficients"'"
—which a". = related to time integrals of p(t)-oth-
er classes of d~.dynamical events have to be taken
into account than considered here.

The authors axe indebted to Dr. B. J. Alder
and Dr. T. E. Wainwright for s imulating discus-
sions and to them as well as to Dr. M. H. Ernst,
Dr. E. H. Hauge, and Professor J. M. J, van
I eeuwen for making available some of t¹irre-

t suits prior to publication. . They also acknowl-
edge helpful discussions with Professor P. C.
Hemmer.
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The constant-volume heat capacity of liquid He has been measured from 0.8 K to
above the A, point. Below 0.9 K the phonon heat capacity corresponds to a dispersion re-
lation e=cp(l-yp ) with y varying from -4.1x10 g cm sec at the saturated vapor
pressure to 19.6 x10 g cm sec near the freezing pressure,

During the past few years, extensive studies' '
of the propagation of sound in liquid He4 have re-
vealed inadequacies in the theoretical expres-
sions for the velocity and attenuation. In a re-
cent Letter, Maris and Massey' have pointed out
that the discrepancies between theory and experi-
ment might be resolved if the coefficient y in the

equation representing the phonon region of the

energy-momentum relation,

e = cp(I yp'-5p' -)

were negative. For example, negative values
would account for the observed attenuation ex-
ceeding the theoretical maximum. However, y
has generally been assumed to be positive, and

no direct experimental evidence for negative
values has been published previously. In this
Letter we report measurements of the constant-
volume heat capacity C~ that provide support
for the suggestion that y is negative. The mea-

surements show that for pressures near the satu-
ration vapor pressure and for low phonon ener-
gies the dispersion is positive [dominated by
terms in Eq. (I) with negative coefficients] and
can be approximated by y = -4.1& 10 '

g
' cm

sec'.
During the measurements the capillary used to

fill the constant-volume cell was closed by a
valve at the entrance to the cell, and evacuated. '
This eliminated the various problems associated
with a connecting capillary filled with He4.

germanium thermometer that had been calibrated
against the susceptibility of a single crystal of
cerium magnesium nitrate was used. The heat
capacity of copper has been measured on the
same temperature scale and the results were in
good agreement with accepted values, demon-
strating the reliability of the calibration. Sys-
tematic errors in C~ are believed to be less than
I /o, and to vary only slowly with temperature.

The low-temperature expression for the phonon
heat capacity corresponding to Eq. (I) is

V, ph

mV(2m28)', 222 2~kg *, 22"*+2 2~2„)'
15A3c '

7 c 7 c

where kB is the Boltzmann constant and V is the mo1ar volume. For temperatures of approximately

1 K or less the roton contribution to the heat capacity should be adequately approximated by'

(3)

where g —
2p 'p"'ksV/(2w)"'h . In the derivation of Eq. (3) the energy-momentum relation for rotons

0
is approximated by e = A+ (p p, )'/2 p. -
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