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Quantum-Mechanical Phase-Interference Effects in Low-Energy He'-Ne

and Ne'-He Inelastic Collisions
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Bea Telephone Laboratories, Whippany, ¹zoJe~sey 07982

Neeeived 8 September 1S70}

Total relative emission cross sections for the production of He I, Ne &, and Ne IL ra-
diation have been measured as a function of energy in low-energy He+-Ne and Ne+-He
collisions. These are the first ion-atom excitation measurements of atomic states pop-
ulated through two different incoming pseudomolecular-potential curve channels. The
oscillatory structure in the He+-Ne data can be explained in terms of phase-interference
effects between potential curves at pseudocrossings occurring at large internuclear dis-
tances.

We have observed radiation and measured to-
tal relative emission cross sections associated
with the excitation of He, Ne, and Ne in low-
energy (10 eV to 5 keV) He+-Ne and Ne'-He col-
lisions. These are the first ion-atom collision-
al-.excitation measurements of given atomic
states populated through two different incoming
pseudomolecular channels (i.e. , He'-Ne and Ne+-

He). Our results show that only the He -Ne ex-
citation cross sections exhibit marked oscilla-
tory structure. When the same excited atomic
states are populated in Ne+-He collisions, only
a gradual increase with energy in the cross sec-
tion is observed, without a pronounced oscilla-
tory structure. Our analysis of the structure
observed in the He+-Ne cross sections provides
strong evidence for the hypothesis that these
oscillations are associated with quantum-me-
chanical phase development. This development
is postulated to occur between an inner (1 to 2

a.u. ) incoming-state/excited-state pseudocross-
ing of the He -Ne molecular potential-energy
curves and an outer (15 to 40 a.u. ) pseudocross-
ing between two excited- state curves.

The apparatus used for these measurements
included an electron-bombardment ion source, '
electrostatic lenses, and a collision chamber.
The radiation from the interaction region was
measured with a McPherson 0.3-m, f/5 mono-
chromator and an 8-20 phototube. The ion-beam
intensity varied as a function of energy from 1
X10 ' A at 10 eV to 1 x10 ' A at 5 keV. The
spread in ion-beam energy was measured to be
less than 1 eV over a wide range of energies.
Single-photon- counting techniques were employed
to facilitate sensitive radiation detection.

Figure I shows excitation functions for some
He I, Ne I, and Ne II excited states obtained in
both He+-Ne and Ne+-He collisions. In all cases,
the locations of the excitation thresholds occur
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above the location required by simple energy-
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FIG. 1. Relative total emission cross sections of
prominent optical lines in He+-Ne and Ne+-He colli-
sions. Each graph is plotted independently in arbi-
trary units. The structure in the cross sections is re-
producible to better than 2 Vo.

conservation considerations. These results are
consistent with the hypothesis that excitation oc-
curs by means of an inner (1 to 2 a.u.) pseudo-
crossing between the incoming-. state and excited-
state curves of the associated molecular com-
plex. In general, such a pseudocrossing occurs
above the energy of the final state. Thus, addi-
tional energy is required to populate the excited
state. This interpretation is given considerable
support from molecular calculations performed
by Michels' and by Coffey, I orents, and Smith, '
as well as from previous experimental results
with various collision combinations. 4
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dual crossing model.

While the calculations of the (HeNe)' system"
[Fig. 2(a), solid Iinesj do not specify any of the
incoming-state/excited-state crossings, our
measurements enable us to propose a plausible
pseudocrossing scheme. The dotted lines in

Fig. 2(a) represent the possible location of the
He(3'P')+N 'e( P», ') excited states. For the
purpose of this discussion, we consider the ex-
citation of the He(3'P ) state in both He'-Ne and
Ne'-He collisions. Since the particular incom-
ing-state potential curve which populates the
He(3'P') level is determined by the collision
combination under study, we expect that the ex-
citation threshold may be different in the two

collision cases. Vhth the measured threshold in-
formation, we may establish the location in ener-
gy of the interaction which populates the He(3'P )

state in each collision process. For the He'-Ne
case, the threshold occurs 24 eV above the ini-
tial energy of the He+-Ne ground state. For the
Ne'-He case, the threshold is 31 eV above the
initial energy of the Ne -He ground state. Since
the initial energies of the He+-Ne and Ne'-He
systems differ by S=eV, we conclude that the
two regions of interaction are separated by 4 eV.

A distinct feature of the 3888-A He 1(3'P'-2~8)

line, as well as all other observed lines arising
from Ne+-He collisions, is the lack of a sharp
threshold. The gradual increase of the Ne'-He
cross sections with bombarding energy suggests
that a well-defined pseudocrosslng does not oc-
cur. Rather, transitions may take place as a
result of the potential curves gradually approach-
ing degeneracy with decreasing internuclear sep-
aration. ' On the other hand, the sharp onsets
which appear in the He'-Ne cross sections indi-
cate that in this case the region of interaction
between the ground- and excited-state curves

occurs at a definite pseudocrossjng.
Rosenthal and Foley have shown that inner

pseudocrossings along cannot account for struc-
tUre ln He -He excltatlon cl oss sectloQs. To
explain such oscillatory structure, they have
hypothesized the existence of pseudocrossings
that occur at large internuclear distances in the
(HeHe)' pseudomolecular complex. The oscil-
latory structure' which we have observed in He+-
Ne cross sections may be explained by a similar
energy-dependent phase-development process
that occurs between the near and outer pseudo-
crosslngs. Assuming the existence of near and
outer pseudocrossings in the (HeNe)' molecular
collision complex, we have analyzed our data in
a new way to show the development of phase be-
tween the two crossing regions.

Figure 2(b) shows schematically the case of
two pseudocrossings. The two inelastic channels,
U, and U2, are populated from the incoming
ground-state channel U, . At R, another transi-
tion, which does not involve the ground state,
takes place —this time between U, and U2. The
phase difference developed in the interval R; &c
&Ro may be written approximately as

with b the impact parameter and E the total en-
ergy in the center-of-mass system.

In the interval of interest 5 /1 &(I, and b.U
= U~-U2 is considered to be independent of time.
The final expression for the phase can then be
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written approximately as

where ~ =RO-R~, v = (2/nt) (E-U)~ and +go ls
the initial phase difference. Since the cross sec-
tion is proportional to cos'(24@), it will exhibit
maxima whenever the following condition is sa-
tisfied:

b.p = 2mn= (1/h)A—U~/v + b, p, .
Thus, if the measured cxoss sections are plotted
as a function of 1/v, the peaks should be equally
spaced. An integer n may theo. be assigned to
each peak and the intercept of the plot of n vs
1/v will give the initial phase difference to an
additive integx'al roultiple of 2m. The slope of
the line mill give the product &U4R which will
constitute R check on molecular potential-curve
calculations Rs they become available.

Figure 3 shows the He'-Ne collision cross
sections plotted versus 1/v. In each case the
peaks in the cxoss sections are regularly spaced.
In the case of the 7032-A Ne I line, there are
eight equally spaced peaks, Rnd a least-squares
fit shows an intercept of 0.01+0.06 indicating 0
initial phase difference. The analysis of the ini-
tlRl phRse difference Rssumes thRt. the lnltla, l
phase corresponds to the phase at infinite veloci-
ty. The quantity 4U4R is determined to be 1.24
X10 ' e7 cm. If hU is a.ssumed to be 1 eV, a
reasonable energy difference between excited
atomic states, AB becomes 25 R.u. which is gen-
erally consistent with the internuclear distances
found by Rosenthal and Foley in the (HeHe)'
molecular complex. The two peaks in the 3482-
A Ne II data ax'e analyzed to behave similaxly
with Rn intercept of 0.08+0.09, Rgain indicating
an initial phase of 0. DUAL is found to be 0.88

&10 ' eV cm. The analysis of the He I lines,
3888 Rnd 4713 A, proceeds similarly. In the
3888-A CRse, the lower enex'gy peRks CRn be
matched to R line whose F intercept is 0.58+0.14
denoting Rn initial phase of m rather than 0. Eval-
uating the slope gives R value for AUDE of 0.9
+10 ' eV cm. Additional high-energy peaks also
appear which cannot be incorporated into Rny
scheme at present. The He I 4713-A cross sec-
tions px'ovlde RQ RddltlonR1 coDlpllcatlon 1Q that
although the peaks are regularly spaced in 1/v„
the locations are not RII equally spaced but are
separated by integral multiple spacings. The
reason for this anomalous behavior is not clear
at present. The F intex'cept for 4713 A is 0.82
+ 0.23 corresponding to 0 initial phase difference.
Here 4U4R is 2.0~ 10 ' eV cm.

The data presented hexein give evidence of the
existence of both an inner pseudocrossing, where
the excited states are populated, and outer pseu-
docx'ossings at which the developed phases of the
various states are compared Rnd the interference
occurs. The fact that structure occurs only in
the case of the He'-Ne collision Rnd not the Ne'-
He case, even though outer crossings occur in
the potential curves of the (HeNe)' molecular
complex common. to both collision processes,
can be readily explained on the basis of this pic-
ture. The lack of structure as well as the slow
gradual rise can be accounted fox' if no well-de-
fined lnnex' pseudocrossing ls assumed to occux'
between the incoming states ('ll and 'Z) and the
excited molecular states. Consequently, no well-
defined initial phase can be established.

It is hoped that by thi. s study and future studies
of these collision processes we will be able to
make definite statements as to both the nature
and t.he relative strengths of the Z-Z, II-II, Rnd
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FIG. 3. Relative total-emission cross sections plotted as a function of i/v. The v is proportional to {E-U) ~2

vnth E the center-of-mass energy and U the average excited-state energy above the ground state, The straight
line at the top of each plot is a linear least-squares fit of the phase integers n versus the locations in 1/v of maxi-
ma in the cross sections.
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Z-II interactions. Not only have our data provid-
ed substantial evidence for the essential correct-
ness of the dual pseudocrossing molecular pic-
ture, but we have also provided basic parameters
and conclusions about the molecular levels par-
ticipating in the collision process which consti-
tute important experimental facts for future cal-
culations dealing with collision spectroscopy.
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Structure in He -Ne emission cross sections at high-

er energies (&300 ev) has also been observed by L. W.
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The asymptotic time behavior of the velocity autocorrelation function and of the kinetic
parts of the correlation functions for the shear viscosity and the heat conductivity is de-
rived. The results are expressed in terms of the transport coefficients and the specific
heats and are valid for all densities.

In a recent publication Alder and Wainwright' reported on molecular dynamics calculations of the
velocity autocorrelation function for a two- and three-dimensional system of hard spheres. The as-
ymptotic decay was observed to be of the form t " ' (where d is the dimensionality of the system}.
They also proposed a hydrodynamical explanation of their observations on the basis of a numerical
solution of the Wavier-Stokes equations. It is the purpose of this Letter to show that the asymptotic
time behavior of such correlation functions can be established precisely in terms of the transport co-
efficients and equilibrium thermodynamic quantities.

As a typical example consider the normalized velocity autocorrelation function

where v,(t) is the velocity of particle I at time t. The average () refers to an equilibrium ensemble
and the thermodynamic limit is always taken as the final step. The numerator of (l) can be written as

(v,„(0)v,„(t))= gdsv v„fdsr, fdsr(U, „(t)5(r,(t)-r)5(v, (0)-v,)P(r,(0)-r )),

where P(r) is a function which integrates to unity. The form of P(r) is in principle arbitrary, and we
shall choose it to be slowly varying (on a macroscopic scale). The insertion &(v,(0)-v, )P(r,(0)-r,)
in the average selects out of the equilibrium ensemble those initial configurations in which the velocity
of particle 1 is precisely determined as v„while its position is given only by the extended probability
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