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A method of continuing the two-nucleon transition matrix off the energy shell for
bound-state, partial-wave eigenchannels is presented. The arbitrary parmeters of this
method are a symmetric function of momentum 0&, (k, k') and the bound-state wave func-
tion 4s(r). The phase-shifts are essentially contained in oz (k, k). While a potential is
presumed to be present, it never explicitly appears in determining the T matrix.

Recently Baranger et al. ' (BGMS) have demonstrated how the two-nucleon, nonrelativistic transition
matrix may be continued off the energy shell without explicitly introducing a two-nucleon potential.
The formalism of BGMS applies to partial-wave eigenchannels without a bound state. In this paper we

extend the BGMS methods to eigenchannels with a bound state.
The two-nucleon transition matrix T(v) is defined by the integral equation

&k'IT(~) Ik) = &k'Ivlk&+ f, d~&k IvI~&(~-~') -'&~IT(~) I». (I)

For &u =k +t'e, where e is a positive infinitesimal, Eq. (I) may be derived from the Schroedinger equa-
tion for the outgoing scattering solution O', '. In this case &k'IT(k'+is) Ik) = &k'IVI% ~'). The matrix ele-
ments &k'IT(k'+i@) Ik) are collectively referred to as the "half-on-shell" T matrix. Furthermore, we

can define a real "half-shell" function y(k, k') by

where, for a given partial-wave eigenchannel, 4~ is the real, delta-function normalized solution to
the Schroedinger equation.

According to BGMS, one may construct the full T matrix given the symmetric part o(k, k') of the
half-shell function cp(k, k'). Starting with an arbitrary o(k, k'), one may follow the formalism and nu-

merical methods of BGMS to obtain a T matrix that satisfies Eq. (I) for some unspecified short-range
potential V. Since the diagonal elements of 0 are directly related to the two-nucleon phase shifts, a
correct fit to the experimental phase shifts is assured as long as v(k, k ) has the appropriate values.
Thus, the tedious process of phase-shift fitting is eliminated if one starts with 0 instead of V to deter-
mine T. Furthermore, in many nuclear problems —for example, proton-proton bremsstrahlung, "
the three-body problem, ' and nuclear matter' —it is the T matrix, not the potential, that is closely re-
lated to the observables.

For partial-wave eigenchannels with a bound state, we will show that the off-shell continuation of

the g matrix is determined by the bound-state wave function and a symmetric function of momentum.

The diagonal elements of the symmetric function are directly related to the phase shifts. The only re-
striction we place on the transition matrix, as in BGMS, is tha. t it is ultimately derivable from a non-

relativistic Schroedinger equation with a short-range, two-nucleon potential. In this way we guarantee
that the scattering solutions and the bound-state solution form a complete orthonormal set.

We now briefly review the BGMS method. We will then show how it can be modified to accommodate
the bound state.

For a partial-wave eigenchannel without a bound state the real scattering solutions I4~0) form a com-

plete, orthonormal set of wave functions (in the delta-function sense). This means that the unitary
matrix U, which connects the unperturbed and scattering eigenstates, i.e.,

&k IUIk)=&k Ie„'),

is real orthogonal. One may then express U as the sum of a symmetric part (8) and an antisymmetric
part (A). The unitarity conditions then become

S'-W'=1, AS-SA =0.

The matrix U may also be expressed in terms of the half-shell function y(k, k'). The resulting ex-
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pression for U, which can be derived from the Schroedinger equation, is

&k'IUlk& = cos5(k)5(k-k') + P(cp(k, k')/(k2-k'2)), (5)

where P stands for principal value. The two-nucleon phase shifts 5(k) are related to the diagonal val-
ues of y by cp(k, k) = -(2k/m) sin5(k).

According to BGMS, the half-shell function may be expressed as the sum of a symmetric part o(k,
k') and an antisymmetric part a(k, k'). They then describe how to determine o., given o, such that Eq.
(4) holds. Since a(k, k) = y(k, k), a fit to the experimental two-nucleon scattering data is fulfilled as
long as the diagonal elements of a yield the correct two-nucleon phase shifts.

If a bound state is present in the partial-wave eigenchannel, the real matrix U is not unitary. Ortho-
normality guarantees that U~U =1, but lack of completeness of the scattering states means that UU~

e1. In this case Eq. (4) no longer holds. The numerical methods of BGMS, which rely on the validity
of Eq. (4), are then inapplicable in determining o, from g.

We shall now show how to construct a real orthogonal matrix W for which Eq. (4) is valid. We deal
with the operator W that connects the scattering states IX~'& of a model Hamiltonian, H„=K+V„, (K
=kinetic energy) with the true scattering states I4~'&. The restriction we shall place on V„ is that it
gives the same bound-state wave function and eigenvalue as the potential V, from which U and y are
derivable.

We define the real matrix 8' by

Because the bound-state wave functions IXs& and I4 ~& are equal, it follows that

&x:I+ &=&x:Ix &=o' &~.'Ix &=&~.'l~ &=o.

By applying the completeness of the eigenfunctions of H and H„, and employing relation (7), one can
easily show that

J dq W(k', q) W(k, q) = 5(k'-k), f dq 8'(q, k') W(q, k) = 5(k'-k);

i.e., the matrix elements W(k', k) form a real orthogonal matrix.
Since the matrix 8' is real orthogonal, we should presumably be able to parametrize it by a means

similar to the BGMS prescription. To do this we define a new "half-shell*' function y~(k, k ) by

v (k, k') =&x.'lv-v I+.'&.

We may then cast the well-known outgoing scattering equation for two-potential scattering' from a po-
tential V = V~+(V-V~),

le, &= lx, &+(k'-H +ie) "(v-v&) le, &

in a form amenable to treatment with real wave functions. Employing the facts that I4~'&= IC~'&e
and IX„'&=IX„'&e ' &'"', we obtain

Ix 0&, t „"'"""Ix,'&+(k'-H +ze) '(v-v )l~,'&,

where 5„ is the phase shift for scattering from V„alone.
By applying the definitions of 5' and cp~, and the relation

(k'-k" +is) ' = P((k'-k") ')-Z(m/2k) 5(k-k'),

we obtain

W(k', k) = le ' & "~ -i(m/2k)y~(k, k)]5(k-k') +P(y~(k, k')/(k' k"))—
(12)

(13)

We may now express y~(k, k) as a simple function of 5(k) and 5„(k). To do this we expand the defini-
tion (9) in terms of a complete set of unperturbed intermediate eigenstates Ik&. We then use Eqs. (2)
and (5), and the definition, d) of U to obtain

y~(k, k') = cos5„(k')y(k, k')-cos5(k)y„(k', k) + PJ dq y„(k'q)y(k, q) [(q'-k') '-(q'-k") '].
Here y„ is the half-shell function for scattering from V„alone.

(14)
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For k =k, the integral term in Eq. (14) vanishes and the diagonal elements of p~ are given by

y~(k, k) =-(2k/m) sin[0(k)-0„(k)].

Substitution of Eq. (15) into Eq. (13) yields

W(k', k) = cos[0(k)-0„(k)]5(k-k') + P(y~(k, k') j(k' —k")).

q)(k, k') = cos[5(k)-5„(k)]q)„(k,k') + cos0„(k')q)~(k, k')

+(k"-k')Pf, dq q„(q, k')y~(q, k)(q'-k') '(q'-k")

+&k'IV~IX~)&Xsl+~')+&k'IX )&X IV-V I+,')
The next-to-last term of Eq. (17) vanishes by Eq. (7). Since ~xs) is a bound-state eigenfunction of

both H and H„with the same eigenvalue, the last term in Eq. (17) also vanishes. Therefore, the half-
shell function y may be directly computed from the known y„, and from y~.

Once q)(k, k') is known, we may compute the fully off-shell T matrix T({d). We use the BGMS result,
modified for the bound state, to obtain

(17)

QOO $ P
((,"(T{td))k)=q((., (.")coe(((k)+ ' dq, —„, ,)rp(q, k )rp(qk)',

0

Therefore, W is a real orthogonal matrix. whose relation to the half-shell function y~ is virtually
the same as the relation (5) of V to y. The only difference is that the phase-shift difference 0-5„ap-
pears in Eq. (16), whereas the phase shift 5 appears in (5). The half-shell function cp~(k, k') can be ex-
pressed as the sum of a symmetric function o~(k, k') and an antisymmetric function a~(k, k'). The an-
tisymmetric part may be determined from cr~ by the methods of BGMS. The only alteration to their
method is that now the phase-shift difference 6-6„plays the role previously played by the phase shift
5. The diagonal el ments of o~ are directly related to the phase-shift differences.

The next task is to relate the true half-shell function q)(k, k') to y~(k, k'). By writing V= V„+(V-V~),
and expanding the definition (3) in terms of the complete set of eigenfunctions of H„, we obtain

(18)
B

Equations (17) and (18) indicate that an explicit knowledge of V is unnecessary in the evaluation of q)

and T(a)). Starting with the symmetric function o~(k, k ), one may determine T(a&) without reference to
the underlying potential V. The transition matrix T(o)) is a very convenient starting point in the study
of inelastic processes, the three-body problem, and nuclear matter.

We have shown that it is possible to continue the two-nucleon transition matrix off the energy shell
in a bound-state, partial-wave eigenchannel without direct reference to a two-nucleon potential. The
parameters of our formalism are essentially the symmetric function o~(k, k ) and the model potential
V„. If one wishes, one may employ the bound-state wave function instead of V„since for certain
types of model potentia. ls (e.g. , separable potentials) the model potential can be calculated directly
from )(s(r). By employing this procedure, one can fix certain bound-state observables as well as the
phase-shifts [which are essentially contained in cr~(k, k)]. One may then test the sensitivity of certain
nuclear processes to off-energy-shell properties of the T matrix and to the bound-state (deuteron)
wave function.

We are currently testing the formalism described above with several solvable models.
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