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The Rayleigh linewidth 1" of xenon was measured on the critical isochore between 0.003
and 5.0'C above T . In the hydrodynamic region (p$-9.2) we find I'=p )(p((T-T )/T 1&

4 2
~ 0 c c

with )(p=(5.94+0.21) x10 cm /sec, and y-(t=0.751+0.004. Our data over the entire
region 0.009-q)-6.7 agree quite well with the recent Kawasaki extended mode-mode
coupling theory. However, the Kadanoff-Swi'ft-Kawasaki result y-P = v does not appear
to be valid.

During the past five years there have been
several determinations of the spectrum of laser
light quasielastically scattered by single-com-
ponent fluids and binary liquid mixtures in the
vicinity of the critical point. The Rayleigh line-
widths for the two single-component fluids stud-
ied so far (SF, by Saxman and Benedak, '

pound CO,
by Swinney and Cummins') were found to have
markedly different temperature dependences,
contrary to the expected "universality" of crit-
ical phenomena. Since it was possible that the
critical behavior of CO, and SF, was influenced
by the internal degrees of freedom of the mole-
cules, we have undertaken a study of the Ray-
leigh linewidth in a monatomic system, xenon. '

Measurements were made along the critical
isochore at temperatures between 0.003 and
5.0'C above T„for scattering angles 42' (0
&138', so that 0.8x10' &q &2.1x10' cm '. (q
= 2'', sin20, where n is the refractive index and

E, is the magnitude of the wave vector in vacuum
of the incident light. )

The 30-mm-long sample cell was formed from
thick-walled Pyrex tubing with a 6.0 &&6.0-mm-
square inside cross section. After the cell was
pumped to a high vacuum, it was loaded by cryo-
genic transfer from a cylinder of Matheson re-
search grade xenon containing less than 50 ppm
inpurities and then sealed off. The sample den-
sity, determined by observing the height of the
meniscus over a range of several degrees below
T„was0.3 /o below the critical density. The
cell was immersed in a vigorously stirred oil
bath which was index matched to the glass and
which was stable to +0.002'C over several hours.

Temperatures were measured with a relative
accuracy of better than '0.001'C with a calibrated
thermistor suspended near the sample cell in the
thermostat. The critical temperature, taken to
be the temperature at which the meniscus first
appeared as the temperature was lowered from
above T„was16.606+0.020'C for our xenon
sample, which is in good agreement with the

value 16.59'C observed by Habgood and Schnei-
der. 4

The Rayleigh linewidth was measured by the
optical homodyne technique. Light from a Spec-
tra-Physics model 125 He-Ne laser was attenu-
ated to avoid heating of the sample and was then
focused to a diameter less than 0.2 mm in the
fluid. The scattered light was detected by a pho-
tomultiplier mounted on an optical bench which
could be rotated about a vertical axis passing
through the sample cell. The spectrum of the
photocurrent was analyzed with two Singer spec-
trum analyzers, the model SB-15a for linewidths
between 5 and 200 kHz and the model LP1a be-
tween 0.02 and 5 kHz. The spectrum analyzer
output was squared and the resultant spectra
were computer fitted with a Lorentzian line
shape.

Near the critical point, the divergence in the
compressibility of a simple fluid leads to a large
gravitationally produced density gradient; there-
fore, at temperatures close to the critical tem-
perature, the linewidth was measured as a func-
tion of height as well as scattering angle. Near
T, the linewidth as a function of height exhibits
a minimum at a density essentially equal to the
critical density, ' and at temperatures a few mil-
lidegrees above T, the minimum becomes quite
sharp. (For example, at T T, = 0.008 C, t—he
linewidth for a beam height 0.5 mm different
from the height corresponding to the minimum
linewidth was 24/q greater than the minimum
value, and linewidth differences larger than the
measurement uncertainty were observed for
height changes of only 0.1 mm. ) Very near the
critical temperature it was difficult to determine
the linewidth minimum because the height corre-
sponding to the minimum linewidth occasionally
drifted 0.1 mm even when the thermostat was
stable to +0.001 C during the measurements.

After selecting those data points believed to
correspond to the critical density, we had 155
values of I" to compare with various theoretical
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predictions. Before describing the comparison,
we briefly review the current theory.

Theory. —(a) Landau-Placzek: The range of
correlations in a fluid is represented by the cor-
relation length $ which diverges as the critical
point is approached: $ =$,e ", where e =—(T T,)—/
T, . In the hydrodynamic region (qg «1) the dy-
namics of density fluctuations are described by
the linearized equations of hydrodynamics which
predict a I orentzian Rayleigh line of half-width'

where y —=X/pc~ is the thermal diffusivity (&, p,
and c~ are the thermal conductivity, density,
and specific heat at constant pressure, respec-
tively). Near the critical point A and c~ diverge
as e ~ and ~ &, respectively; therefore, we
can write X=X,e&

(b) Fixman-Botch: As the critical point is ap-
proached, the increasing range of correlations
destroys the strictly local nature of the hydro-
dynamics. Fixman first suggested that the hy-
drodynamic equations could be properly modi-
fied by the addition of a nonlocal pressure term. '
Solution of the modified hydrodynamic equations
leads to a modified Rayleigh linewidth'

with b = 1. Far from the critical point, q$ «1
and the Landau-Placzek result (1) is recovered.

(c) Dynamical sealing: Halperin and Hohen-
berg have proposed that the Rayleigh linewidth
I'(q, $ ') is a homogeneous function of q and ]
and this assumption, together with the known
form of I" in the hydrodynamic limit, Eq. (1),
leads to the expression'

(3)

where z=2+(y-g)/v. Inthe limit q)«1, Eq. (3)
becomes (by assumption) equal to Eq. (1), and
in the critical limit q)»1, Eq. (3) becomes

(4)

where B is a temperature-independent constant.
For intermediate values of qg, Q(q)) is unspeci-
fied, as is the exponent z.

(d) Kadanoff-Swift: These authors carried out
a mode-mode coupling analysis of transport co-
efficients in the critical region and found that
y-g = v. ' This result, when combined with the
dynamical scaling arguments above, implies
that z [in Eqs. (3) and (4)] is equal to 3.

(e) Kawasaki: Recently Kawasaki has carried
out a detailed mode-mode coupling analysis of

A = (kHT/16') = (3m/8)g. (S)

A temperature-dependent linewidth of the form
predicted by Kawasaki was first observed in the
binary mixture aniline-cyclohexane by Bergs
et 3j."

Experimental Results. —(a) Hydrodynamic re-
gion (qg «1): Our 53 data points for which q$
«0.2 (as determined by the analysis in the follow-
ing paragraphs) accurately obey the q' angle de-
pendence predicted by Eq. (1). A least-squares
analysis of a log-log plot of those data, which is
a straight line within the experimental uncer-
tainty, yields y, = (6.94 +0.21) x10 4 cm'/sec and

y —/=0. 751 +0.004.
(b) Nonloeal hydrodynamic region (qg «1): As

the critical temperature is approached we find
that small deviations from the hydrodynamic be-
havior are accurately described by the Fixman
type of equation. Our values for the correlation
length, obtained by fitting the linewidth data for
q$ «1 by Eq. (2), can be compared with the cor-
relation lengths obtained by Giglio and Benedek"
from measurements of the angular dependence
of the scattering intensity. The latter measure-
ments were made along an unknown density path
which approached the critical density as T was
increased above T„.therefore, only the values
of $ for which T-T, &0.120 C are included in
this comparison. The value of the constant b

density fluctuations in fluids and has derived the
following closed expression for the Rayleigh line-
width which applies to all values of q$ ":

I' = (k8T/Swq)')

x [I+q'$2+ (q'$'-q '$ ')arctan q$], (5)

where k8 is the Boltzmann constant and q is the
high-frequency part of the shear viscosity. [An
alternative derivation of (5) has been given by
Ferrell. "] In the limit q$ «1, Eq. (5) again re-
duces to the hydrodynamic result (1), with the
thermal diffusivity given by y = kHT/6mq$. Since
g has no critical anomaly in the Kawasaki theory,
the thermal diffusivity is proportional to $

' as
in Kadanoff-Swift. For q)&1, Eq. (5) becomes

(6)

which differs from the Fixman-Botch result (2)
only in that b =-', rather than unity. In the limit
q&»I, Eq. (5) becomes

I' =Aq,

where A is given by
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that brings our correlation lengths into coinci-
dence with those from intensity measurements
is b =0.55+0.12, in agreement with Kawasaki's
result b= —,'. (Chu, Kuwahara, and Fenby have
recently examined linewidth and intensity data
for several simple fluids and binary mixtures
and have also concluded that b =-,' within the ex-
perimental uncertainty. ") The temperature range
over which Eq. (2) is applicable to our data is
too small to deduce the correlation length ex-
ponent p from the data, but if we impose the
constraints v=y-/=0. 751 and b=-,', then $,
=0.51+0.06 A.

Our values for the correlation length are about
12 times smaller than the values obtained by Yeh
(for the same e) in linewidth measurements on
xenon, but Yeh has reanalyzed his data, includ-
ing an aperture correction formerly omitted,
and has obtained correlation length values com-
parable with ours. "

(c) Critical region (q$»1): We find that very
near the critical point the Rayleigh linewidth
exhibits the predicted temperature-independent
q' behavior [Eq. (7)]. A least-squares analysis
of the data for which q( &1, using the complete
Kawasaki expression (5) with the values of y,
and y-g obtained from the hydrodynamic region,
yields A = (4.7 +0.2) x10 "cm'/sec; since $,
=8A/3~y„we have $,=0.58+0.03 A. The Kawa-
saki equation with these values for the param-
eters is shown in Fig. 1 along with the experi;—

50—

mental data. The data in the region 1&qP, &0 2.

show a small systematic departure from the
Kawasaki theory with an rms error of 7 j~, com-
pared with 5 Jp for the region q$ & 1 and 3/c for
q)&0.2. Although this deviation from the theory
may be explained at least partially by the diffi-
culty we had in finding the minimum linewidth as
a function of height, Berge et al. also observed
a systematic departure from the Kawasaki the-
ory for q$-1 in their linewidth measurements
on aniline -cyclohexane. "

An alternative to the above procedure of ob-
taining X, and y —g from the linewidths in the
hydrodynamic region and $, from the linewidths
in the critical region is to fit simultaneously the
data for all values of q$ with the Kawasaki equa-
tion. Since there are 87 data points for 0.2&q)
&1 and only 15 points for q$&1, this latter pro-
cedure gives undue weight to the intermediate-
q$ region, and the resultant value of A, A = (5.1
*0.2)&&10 "cm'/sec, is clearly greater than the
value of 1"/q' in the limit qg»1.

Attempts were also made to fit the linewidth
data with the more general scaling function of
Halperin and Hohenberg, Eq. (3). With y —g
fixed at the value measured in the hydrodynamic
region and with values of v as low as 0.5, the
scatter in the data using the generalized function
appears qualitatively no worse than in Fig. 1.

Discussion. —Our results for 7
—g for xenon

are shown in Table I along with results from
linewidth measurements on other simple flu-
ids'~" and on binary mixtures '" " (in a mix-

O
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FIG. 1. I'/q vs I/qt' for xenon on the critical iso-
chore between 0.008 and 5.0'C above T, . Solid tri-
angles, 0=42'; solid squares, 42'&0 &188; solid
circles, 0= 188'. The solid line is a plot of the Kawa-
saki linewidth equation (5) for the parameters yo = 5.94
x 10 cm'/sec, v = 0.751, and $'0 = 0.58 A.

System

Xe
SF6
SF6
CO2

Isobutyric
ac id+ water

n-hexane
+ nitrobenzene

Aniline
+ cyclohexane

Phenol
+ water

Henry
Benedek
Braun
Swinney

Chu

Chen

Berge

Pusey

This

17

18

12

0.751 + 0.004
1.26 + 0.02
0.89 + 0.07
0.78+ 0.02

0.68 + 0.04

0.66 + 0.02

0.59 + 0.06

0.68+ 0.08

Table I. Besults of Bayleigh linewidth determina-
tions of the exponent y+ which describes the critical
behavior of. the thermal diffusivity y for one-compo-
nent fluids at the critical density and the diffusion con~
stant B for binary mixtures at the critical concentra-
tions: y-D-e7 ~, where e= (T T,)/T, and—T&-T, .

Author Ref. v-0

1172



QQLUME 25, NUMBER 17 PHYSICAL REVIEW LETTERS 26 OCTOBER 1970

ture the binary diffusion constant plays the same
role that ){plays in a one-component fluid). The
exponents for Xe and CO, are seen to be in rea-
sonable agreement, but somewhat higher than
the exponents observed for the mixtures. In
contrast to these results for CO„Xe,and four
binary mixtures, the result y -(= 1.26 + 0.02 has
been obtained for SF, by Benedek and collabora-
tors' in a series of very careful experiments
over the past five years; however Braun et al a6

have recently reported y-g=0. 89+0.07, so the
problem of SF, remains unresolved.

Our results for y-g can be combined with the
results for y from other experiments to deduce
a value for (. Vicentini-Missoni, Levelt Sengers,
and Green have fit the Habgood and SchneiderPVT
data for xenon with their scaling-law equation
of state obtaining y = 1.26." The compressibility
exponent for xenon below T, has been determined
directly from measurements of the scattering
intensity by Giglio and Benedek, "who found

y„.„„,.d'= 1.228+0.028 and y„'= 1.244+0.017,
and according to the scaling laws of Widom and
Kadanoff, y'=y. " Hence we take y =1.25+0.02
and conclude that /=0. 05 +0.03. Direct mea-
surements of the thermal conductivity in the
critical region are extremely difficult, and the
only fluid which has been studied extensively
enough to determine the exponent g is CO„ for
which Murthy and Simon have recently reported
g= 0.674 +0.002."

Our results for xenon and the similar recent
results of Bergs et al."for aniline-cyclohexane
indicate that the Kawasaki function, Eg. (5), is
a very good representation of the experimental
data. In particular, the predicted temperature-
independent limiting linewidth, I" = (kBT/16@)q',
has been found to be in good agreement with in-
dependent viscosity data for aniline-cyelohexane"
and CO, ." Our value for the limiting linewidth
in the critical region is also in good agreement
with independent viscosity data for xenon extrap-
olated to the critical point.

We thank Tong Kun Lim for his assistance in
the collection of data.
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