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upper bounds of T„, for our sample of NaF, are
-5 and 10'K, respectively, for an ambient tem-
perature of 2'K.

The theory predicts that the typical length (or
time) for the development of the instability var-
ies as 0, where 0 is the input width. In Fig. 3,
we have plotted the output height II against 0'
and find that for small o, H-exp(o') verifying
that the time constant for the instability does
indeed follow the predicted behavior.

In addition to the experiments described above,
measurements were made in other heater-de-
tector geometries. In one such experiment, a
large heater (1.2 x1.2 cm') was deposited on one

end and a linear array of three detectors of size
3.5 &3.5 mm' was deposited at the other end. It
was found that each detector received approxi-
mately the same amount of energy at all power
levels. Thus power-dependent spatial focusing
effects are unimportant in our experiment. In
another experiment heat pulses were propagated
approximately 20' from the (100) direction. No

pulse steepening was observed, confirming that
propagation along a symmetry direction is nec-
essary to observe the effects discussed here.

In summary, we have observed nonlinear prop-
agation of heat pulses in solids in excellent agree-
ment with the theory of Tappert and Varma.
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Using an asymptotic analysis leading to a modified Korteweg-de Vries equation and a
nonlinear parabolic equation, it is shown that under certain conditions on phonon disper-
sion and lattice anharmonicity, self-trapping of heat pulses occurs in solids at low tem-
peratures.

In an insulating crystal at an ambient tempera-
ture T, in the ballistic regime of the thermal
conductivity curve, a heat pulse generated at
temperature T„&7', may be regarded as a collec-
tion of large-amplitude waves propagating on a
nonlinear lattice. The propagation of heat pulses
is determined by the equations of motion,

0'8 8+~ ~ ~8v 8 v
mu, . -~~,.8a, , u,. ~L,. 8~zl, a, , l u,. ul

where u,. is the displacement of the ith atom
in the 0. direction, and the a's are derivatives of
the interatomic potentials. Along a symmetry
direction the propagation of different polariza-
tions decouple (a, , - 5„s) in the harmonic ap-
proximation. Nonlinear terms with P, v,
= a produce self-action effects, whereas non-
linear terms with P, v, ~ ~ c n produce coupling
to other polarizations and therefore loss (or
gain) to the pulse. Neglecting the short initial
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time interval when the pulses having different
polarizations overlap, the coupIing of the Iowest
transverse branch (lt) to the other branches is
very weak if T„»T, since phonons in the lt
branch can only decay by first combining with a
phonon of one of the upper branches. Orbach and
Vredevoe' have shown that for phonons of fre-
quency u such that h&u/k~ —T„» T, (k~ = Boltz-
mann's constant), the linear relaxation times
are given by

'-T„'exp(-T„/T, ) for the lt branch,

where a «1 is a parameter which measures the
amplitude and ( = O(l), 7 = O(l), v = O(l). This
ordering differs from that which leads to the
Korteweg-de Vries (KdV) equation' because we
are here interested in relatively high-frequency
solutions of (3), where the dispersion is strong
enough to prevent the rapid harmonic generation
and wave-form distortion which occurs at lower
frequencies because of resonant energy trans-
fer between Fourier components. ' Using (4) in
(3) and setting v

&

= w, we obtain the modified
KdV equation, '

-T„s for other branches.
w, +-,'(paw+ qa'w')w+ —,'w, , ) =O(~'), (5)

where c is the lt sound velocity and h is a length
on the order of a lattice spacing. Introducing
the continuous Langrangian displacement u(x, t),
Eq. (1) reduces under the above conditions to the
following nonlinear, dispersive, scalar wave
equation2:

u„=c'[u„„(1 e+pu„+qu„')+h'u„„„„), (3)

where the subscripts denote partial derivatives,
e is a small numerical constant, and p and q are
numerical constants of order unity which are
directly related to the anharmonic force con-
stants: eP =a,h/a, and q =a4h'ja„where a„a„
and a, are essentially the second, third, and
fourth derivatives of the potential. We have
assumed that the quadratic nonlinearity (cubic
term in the potential) is small compared with
the cubic nonlinearity' (quartic term in the po-
tential); the degree of smallness is measured
by e.

In order to describe only waves traveling
toward the right, Eq. (3) is expanded along the
characteristic x-ct and at the same time made
dimensionless and properly scaled [so that the
nonlinear and dispersive terms in Eq. (3) are
small, as required by its derivation]. To do
this, let

$ = e (x ct)/h, r= e'ct/h, u/h = a—v,

Therefore when T„&=T, and for propagation
along a symmetry direction, we may neglect
losses of the lt branch and use a scalar ampli-
tude.

Neglecting diffraction effects, the wave motion
is one-dimensional. We consider T„such that
the lt phonon dispersion is adequately represent-
ed by

(u'= c'k'[1-h'k'+O(h'k4)]

where it is assumed that c «a .
Next following the method outlined by Benney,

Newell, and Roskes, ' Karpman and Krushkal, '
and Asano, Taniuti, and Yajima, we perform
an additional asymptotic expansion to obtain a
representation of Eq. (5) corresponding to nar-
row-band wave packets. Thus we look for a so-
lution of the form,

h'k, ' & e'P '/6q & 0, (8)

where we have now reverted to dimensional units.
Thus the quadratic nonlinearity has a stabilizing

w —q(&)ez(&oL-wo ~c.c.+0[( 0 +P(2)82~(&0~ ~0

+c.c.] +a'[g"~e""o' o'+c.c.]+O(a'), (6)

where 4, is a positive parameter of order unity,
and the P~'~ are complex amplitudes of order
unity which vary slowly with $ and 7 Carry. ing
out the expansion to O(a') inclusive, we find
that g~'~ satisfies the nonlinear parabolic equa-
tion' '

(~) = ~k ( &»+ —'k (q p/6k 2)-~y~'&~'y&'& (7)

where y =a($+-',k,27) and s =a'w. All quantities
in Eq. (7) are now of order unity. Although this
derivation, strictly speaking, applies only to
coherent wave packets, it is clear from the form
of the nonlinear term in Eq. (7) (no phase cor-
relation) that incoherent wave packets (such as
heat pulses in solids) may also be described by
this equation if ko is chosen as a representative
wave number of the "carriers" in the pulse.

From the known properties' "of Eq. (7) it fol-
lows that finite-amplitude periodic waves are un-
stable, and self-trapping (more precisely, lon-
gitudinal pace-time self-focusing'0) is possible
lf
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effect which can be overcome only at sufficiently
high frequencies. This instabili, ty does not ap-
pear in the KdV approximation (rrr =0). Further-
more, in order that a pulse of width o undergo
self-trapping, its amplitude [(u.2) = 2e'~'l0'" I'1
must exceed a critical threshold, ""i.e.,

Next we examine the possibility of observing
self-trapping of heat pulses in different T, reg-
imes.

(1) T. in ballistic regime. —As already argued,
for T„satisfying Eqs. (12) and (14), E solitons
should be observed.

(2} T, in the second-sound regime. —The sec-
ond-sound regime is defined by"

where o, is a numerical constant of ordex unity
which depends on the pulse shape.

When condition (8) is satisfied, it is known'"
that Eq. (7) has a stationary solution wherein the
linear dispersive spreading is exactly balanced
by the nonlinear self-tx'apping. Such a wave

packet, which has been called an envelope soli-
ton' (for brevity, an E soliton), is distinct from
the classical soliton" (solitary wave'4) which
cRII be obta1ned Rs R solll'tlon of Eq. (5) 111 R dlf
ferent asymptotic limit from that considexed
here. Expressed in terms of the original vari-
ables, the E soliton is given by

Q„') = A' sech'[A(Q/24)"'(x-Ir, t)/h],

where A=2ea, Q=q-e P'/8/Pku', and v, =c(1
—2II ko').

Ne now discuss the conditions on T„ to observe
E soll'tons. We Inllst of coul 86 8Rtlsfy (8)
further, when (u, ')» (u„')„ the propagation
distance required to achieve maximal self-trap-
ping is given roughly by

(u„')c "'
II'ko (u„2)

In order to observe the effect, we must have
d & I

~
the cx'ystal size. Neglecting zex'0-point

'motion, this yields a condition on T„,
1/2

2) T 2 -I/2 IP BeD (13}g ( lower)

~ Trr(upper) (0/~)T2(lower) (14)

where eD is the Debye theta of the crystal and
8 and kB are the Planck and Boltzmann constants,
I'espectlvely. The uppex' limit oD TI ls se't by
losses: that is, d & ~, the mean free path, which

for Rayleigh scattering by defects is given by

4vrpc' P
2'~(l-x)u, 'T„'

where x is the concentration of the defects, x is
the relative magnitude of the defect (for example,
r =Am/m for defects of mass m +6m), and p is
the density of the crystal. We get the upper lim-
it on TI, .

1((o, T, )» II 'c )) „T'((u, T, ) (15)

(besides tile colldl'tloll oII tile impurity scRt'tel'

ing time), where T„and 7„are the normal and

umklapp relaxation times. Normally second-
sound experiments are done with heater tempera-
tures very slightly above T, , so that v~ and 7„
are functions only of T, . In the more general
case 7~ and s„wiII be a function of the phonon

frequencies (d in the heat pulse. If propagation is
along a symmetry direction, second sound is
observed" in the transverse branch since for
T„=T,, 7~ for transverse phonons is less than

for longitudinal phonons. If now T„»T„by (2)
for transverse phonons will increase sharply

aDd fol IODgltudlnal phoDons will decrea, se. Thus
the possibility exists in principle that for T„
» T„second sound may disappear for the trans-
verse phonons and appear for the longitudi. nal
phonons and E solitons may appear for the trans-
verse phonons. This requires a, simultaneous
satisfaction of conditions (12), (14), and (15)
appropriately for the transverse and longitudinal
branches, and detailed numerical work is re-
quired to assess its feasibility in any given
material.

(3) T, in umklapp regime. —Equation (5) con-
serves the total momentum. Hence we do not

believe that solitary waves can be seen for T,
in the umklapp regime for any T„.

Since one does not obtain a one-dimensional
equation of motion in a, scalar variable for an

arbitrary direction of propagation, we suspect
that the nonlinear behavior discussed may not

be present for such a propagation. The experi-
mental results reported by Narayanamurti. and
Varma'7 for T, in ballistic regime are fully con-
sistent with the predictions of the theory pre-
sented above.

We appreciate many helpful remarks by G. Ros-
kes who has independently verified the asympotic
analysis presented here. %'e wish to thank
V. Narayanamurti and N. J. Zabusky for stimu-
lating discussions.
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A general method is described for obtaining a map of the variation of the electronic
lifetime over the entire Fermi surface using the Dingle temperatures measured in the
de Haas-van Alphen effect. The method is illustrated by presenting maps of the varia-
tion of the electron-impurity scattering lifetime for Au:Ag and Au: Fe dilute alloys.

We wish to present some preliminary results
in which, for the first time, a map showing the
detailed variation of the electronic lifetime over
an entire Fermi surface has been obtained. We
describe a conceptually simple and general ana-
lytical method for decomposing the orbitally
averaged lifetimes measured in de Haas-van
Alphen (dHvA) experiments to yield local values
of the lifetime. The method requires a detailed
knowledge of the topography of the Fermi sur-
face and of the distribution of electronic veloci-
ties over it. Such information has recently be-
come available for the noble metals' and we illu-
strate the method using two dilute alloys of gold,
Au:Fe and Au:Ag, in which the scattering of
electrons is dominated by the solute.

The determination of local values of the elec-
tronic lifetime over the Fermi surface in a me-
tal is a problem of considerable current interest
as evidenced by the many aspects of this prob-
lem reviewed in the published proceedings of a
recent international conference. ' For such de-

termination, one requires ideally a physical ef-
fect which arises from a local and well-defined
group of carriers. The application of one such
effect, magnetic-field-induced quantum states,
to study most elegantly the anisotropy of elec-
tron-phonon scattering in copper was reported
recently in this journal. The tilted-field Gant-
makher effect has similarly been used in potas-
sium. ' While in principle such effects may be
employed to study the scattering of electrons by
imperfections other than phonons, their applica-
tion is confined to materials of high purity rela-
tive to those which may conveniently be studied
by means of the dHvA effect. The work reported
here, while at an early stage, is intended to il-
lustrate that the dHvA method may be used to
explore in some detail the anisotropy of electron-
impurity scattering for dilute alloys of relatively
high solute concentrations. Demands upon ma-
terial characterization are thus less stringent
for the dHvA method which has the further advan-
tage that problems inherent in the preparation of


