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We propose a one-dimensional model of a superconducting link which is “weak” only
insofar as it has a lower critical current than the superconductors on either side. Ac-
cording to appropriate solutions of the Ginzburg-Landau equations, the supercurrent J
is a single-valued, odd function of the phase change ¢ across the link, which goes to
zero at ¢ =0 and ¢ =7 and tends to the Josephson relation J< sin¢g in the limit of a very

weak link.

The importance of phase coherence in super-
conductivity was first emphasized by Josephson,
who predicted that a resistanceless current
could flow through a4 tunneling junction between
two superconductors.! He derived a simple
equation j=j,sing relating the supercurrent den-
sity j to the difference ¢ between the phases of
the superconducting order parameter A on either
side of the junction. Actually the exact nature of
the junction does not come into the derivation;
only a low transmission coefficient for the bar-
rier is required. This is particularly clear in
subsequent work by De Gennes who represented
the barrier by effective boundary conditions on
A and derived the correct behavior of the maxi-
mum supercurrent j, near the transition temper-
ature T, from the Ginzburg-Landau (GL) equa-
tions.??

Characteristic Josephson interference effects
have been observed with normal metal “pbarriers
and even superconducting “point” contacts,® as
well as with tunneling junctions. The only ob-
vious common feature of such “weak links” is
that the contact has a much lower critical cur-
rent than the bulk superconducters on either side.

By monitoring the total magnetic flux © en-
closed in a bulk superconducting ring containing
a weak link as a function of the applied flux ¢,,
Silver and Zimmerman® were able to show that
a sufficiently weak contact exhibited a single-
valued, reversible, smooth, periodic (period
2m), though not necessarily sinusoidal, current-
phase relationship.

The fact that a phase change on the order of 7
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can occur across a short weak link is not a triv-
ial observation. In a naive picture one would
treat the link as a narrow constriction of length
a and assume that the supercurrent increases
linearly with the superfluid momentum p,, re-
sulting in a phase difference ¢ =p a/h across
the link. The maximum phase difference would
occur for p, = ii/£, where £ is the temperature-
dependent Ginzburg-Landau coherence length,
giving @ . =a/&, which can be much less than
7. The phase change measured in the experi-
ment ranged between 0 and 7. In this Letter we
show how such a weak-link current-phase rela-
tionship can arise by presenting a soluble model
which describes a superconducting contact which
is “weak” only in its lower critical-current-car-
rying capacity.

In order to understand the Josephson-like be-
havior of weak links, we consider the following
somewhat oversimplified, but soluble, one-di-
mensional model. The “weak link” occupies re-
gion B (lx < 2a) which is different from region
A (Ix!>3a) only insofar as it has a shorter mean
free path Iz and hence a larger penetration depth
Ag=X,/v? and a smaller coherence length &g
= £AyY? where ¥ =Xp/X4, X being Gorkov’'s uni-
versal function of the impurity parameter 1/&,
(mean free path/BCS coherence distance). The
superconductor in region B has a smaller criti-
cal current density than regions A, but otherwise
they have the same thermodynamic properties,
e.g., transition temperature 7., equilibrium en-
ergy gap, and bulk critical field H,. A uniform
current density is assumed to flow in the x direc-
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tion, and screening effects are ignored. This
provides a fair description of the behavior ex-
pected in the immediate vicinity of a real point
contact where most of the phase change occurs.
The weak-link parameter y is perhaps best
thought of as representing the decrease in the ef-
fective cross-sectional area available for super-
current flow in the weak link compared with the
bulk. y is expected to be very small in practice.
Our analysis is based on appropriate one-di-
mensional solutions of the GL equations® which
are strictly valid only near T, but should, never-
theless, provide a qualitatively correct picture
of the situation even if nonlocal effects are im-
portant. The magnitude f(x) and phase ¢(x) of
the reduced order parameter, A/A,=f(x)e? ¢,
must satisfy the following nonlinear equations:

> dg\?
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Introducing scaled variables X =x/£ 4 and J =j®,/
(cH ,2£), we obtain

Fa"=P/f L +fa2=0 (1Xl>d), (3a)
V" =I2/(vf8°) +fp—f5°=0 (IX|<d), (3p)
and . x
ax e dx
o2 [ [ ) “

where d=a/(2¢£,). The solutions of Egs. (3a) and
(3b) must be matched at the boundaries X =+ d.
The integral (4), defining the total phase change
¢, is cut off at a distance X, from the contact.”
The most complete discussion of the relevant
boundary conditions is due to Zaitsev.® In the
case of our model they reduce to the continuity

of A and of the normal component of xVA, i.e.,
FAD) =fpd) =fa; ¢ 4(d) = ¢ 5(d);
Fd@=yfp'(d); ¢4'(d)=ves(d). (5)

We have looked for symmetric solutions of (3a)
and (3b), bounded between 0 and 1, and tending
to a constant (f «) less than unity for X >d. f. is
related to the reduced current density through
J=f002(1"‘fno2) 1/2

Both (3a) and (3b) can be integrated once to
yield

(Fa)?=2f 2= DL £=-2(1-f D) ], (6a)
Y(f8)2 = 2(f 5 =f I o'~ (2=f)f 2
+28%/(vfD)],  (6b)

where f,=/5(0). These equations can be used to
replace the X integrations in (4) by more con-
venient integrations over /2 and to express the
boundary condition on f,’ and fz’ in terms of fu,
Jo» and f;. In addition, their solutions can be
written in terms of known functions (see Table I)
since the expressions on the right sides of (6a)
and (6b) are cubic in f2.° Such solutions were
used by Mamaladze and Cheishvili in a study of
superfluid flow through a porous partition® and
by Langer and Ambegaokar in their work on fluc-
tuations in one-dimensional superconductors.’
The solutions were matched by specifying d
and y, determining the value(s) f, satisfying the
boundary condition relating f,, f;, and f« for
various values of f. (or J). Typical results are
shown in Fig. 1. Two acceptable solutions were
found for J<dJ,(d,y). This critical current is
plotted as a function of ¥ for d=1 and d=0.05 in
Fig. 2(b). We notice a dramatic enhancement of
J, above the intrinsic critical density J,yY2 of
the impure superconductor in region B. Once

Table I. The solution to Egs. (6) in regions A and B.

2_oM_f 2\ 122
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Solution 1, A>0, ¢, >gq-=0:

2
fi=ft+ [w] q-r kiP=(gs=q-)/q4, ui=Xlg,/ @12
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Solution 2, A<0:

- —_ 2
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FIG. 1. The two solutions for f 2(X) vs X for a weak
link with d=1.0 and Y=0.60, and f.2=0.9850, fy*
=0.9761, and f,°=0.0451.

Jfo and f,; are known, the phase difference can be
obtained from (4). We actually calculated

ool e 5

. f ) -] 7= (7)
W X)) Jy fAX) J, S
which is the phase difference between the solu-
tions for a given J with and without the weak link,
respectively.!

Typical results for J vs ¢ are shown in Fig.
2(a). The curves show the desired behavior and
tend to the sinusoidal Josephson relationship for
small y."* As ¢ —~7, both f, and J approach zero,
but J/f, tends to the finite limit 7/ 5'(0); the main
contribution to the phase difference comes from
the region B where 2J/yf? exhibits a 6-function-
like peak of width yf,?/J. Right at ¢ =7, the order
order parameter vanishes in the middle of the
weak link.

We wish to offer the following physical inter-
pretation of our results. With increasing cur-
rent flow the phase difference increases from 0.
The supercurrent causes a marked depression
of the order parameter in the region of the weak
link. Since this depression propagates a few co-
herence lengths away from the contact, the weak
link effectively acquires a length =2£,. The
critical current of the weak link is enhanced
as a result of this proximity effect. Thus the
maximum supercurrent through the weak link
can be much higher than in the previously dis-
cussed linear model, and corresponds to a phase
change of the right order of magnitude no matter
how short the link is. This explanation involves
the nonlinear features of the theory in an essen-
tial way. The otherwise appealing derivation of
Josephson-like behavior in point contacts pro-
posed by Aslamazov and Larkin'® approximates
the spatial dependence of the order parameter
in the region of the link by a harmonic function
independent of the current and does not include
such nonlinear effects.
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FIG. 2. (a) The current-phase relationship for a
weak link with d=0.05 and v=0.20, 0.10, and 0.015.
Note that for y<<1, the current-phase relationship
becomes sinusoidal. (b) The critical current of the
weak link as a function of its length and weakness pa-
rameter y. Note that for d <1, the critical current is
not reduced from the bulk value until Y <d.. The dashed
line is the intrinsic critical current density of the
weak-link material J, yi2,

Solutions for long links have also been found.
When d>1, or even 1>d>y"2 the phase dif-
ference corresponding to the maximum current

‘J,, is much larger than 7, although ¢ still tends

to 0 or 7 as J~0. The resulting J(¢) curve is
therefore re-entrant.

In order to avoid confusion we wish to note that
Josephson-like behavior observed™ in long links
slightly below T'. has been explained in terms of
averaging by thermal fluctuations between adja-
cent fluxoid quantum states,®!® a mechanism
which has little in common with that required to
explain observations at lower temperatures to
which our arguments apply.
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X-RAY DIFFRACTION DURING SHOCK-WAVE COMPRESSION*
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X-ray diffraction has been observed for the first time from material under shock com-
pression. This was accomplished by directing a single pulse of x rays at LiF which was
under compression from a shock wave, and observing the (200) diffraction line from the
shock-compressed state. The experimental window for observing the effect was ~20
nsec; the pressure behind the shock front was ~130 kbar.

In recent work, Johnson, Keeler, and Lyle
demonstrated that a Debye-Scherrer pattern can
be produced in less than 100 nsec.’ The x-ray
device which is capable of this incorporates a
pulsed x-ray generator built according to the
principles of Blumlein® and Fitch and Howell.?
The authors in Ref. 1 suggested that this device
be applied to the study of materials undergoing
shock compression; a report of first experiments
towards that goal is published slsewhere.* Re-
sults of those experiments, while encouraging,
were not conclusive because of the difficulty of
reliably turning on the x-ray drive at the appro-
priate time. Using a Blumlein device which was
modified to overcome this difficulty, however,

we have clearly observed diffraction effects
arising from the interaction of x rays and the
shock -compressed state of LiF.

For this experiment, we made use of scintilla-
tion detectors described elsewhere.® These de-
tectors, with a response time ~5 nsec, consisted
of four channels, with the center point of each
channel separated by 0.19 cm from its neighbor.
The resolution of this detector system seriously
limited accuracy but was sufficient to demon-
strate without question that diffraction effects
were observed from the shock-compressed state.

The experimental geometry is shown in Fig. 1.
A high-explosive, plane-wave lens was boosted
by a TNT pellet 1.27 cm thick. The resultant
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