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Cooling by adiabatic freezing of He eventually comes to a dead end because the solid
transforms into an antiferromagnet. It is shown that in the presence of a magnetic field
the final temperature can be made arbitrarily low and is limited only by the starting tem-
perature of the freezing process.

We recently estimated' that the lowest tern-
perature T» attainable by the adiabatic freez-
ing' of He' was about 0.5 mK. Since this process
now appears to be a useful method for producing
very low temperatures, it seemed of interest to
study mechanisms whereby Tf &

might be ex-
tended to significantly lower temperatures. We
present briefly the results of our study which
will be treated in detail in another journal.

The limiting temperature Tf „ is closely as-
sociated with the antiferromagnetic transition
temperature T, of solid He'. At the upper ap-
proaches of T„rapid spin ordering occurs in
the solid, causing the entropy available for cool-
ing to decrease drastically. Our problem is
then one of finding a practical way of lowering
TQ ~

The spin ordering may be accounted for by ex-
change coupling between a given nuclear spin
and its nearest-neighbor spins of opposite direc-
tion. If the exchange potential energy per atom
is denoted by —,

'
~J~, then in general the spin-or-

dering temperature is given by

r, =vzlJI /2u,

where k is the Boltzmann constant, z is the crys-
tal coordination number, and v is a positive num-
ber of the order unity. In a spin-& antiferromag-
net, such as bcc He', the couplings tend to lock
the sublattices of the two spins in opposite direc-
tions. In the region T & T„ the total spin of the
system and the magnetic moment disappear be-
cause of mutual compensation of the sublattices.
The situation, however, is changed radically by
application of a. uniform magnetic field parallel
to the spin direction of one of the sublattices. '
This produces preferential magnetizations cr

parallel to the direction of the field and 0 oppo-
site to it such that )o+)-~&x ~. The external
field transforms the crystal coordination number
z into a spin coordination number z(H) which de-
pends on the field strength. Since the coordinat-
ed number z(0) of opposite or (—) spins of a
given (+) sublattice spin is decreased by the

alignment of the field in the (+) direction, then

z(H) &z(0).

When II reaches a value

(2)

where T, (H)-0 as H-H, and z(H, )-0. The
scalar dependence of T, on H is parabolic, at
least as H-0. In solid Hes at melting, ' T, (0)
= 2 mK which, with the experimental value of p,
yields II, =27kG.

Because of the cubic magnetic symmetry of
He', the above calculation changes only slightly
for various models that may be chosen to repre-
sent the solid. In general this is not true of elec-
tronic or ionic antiferromagnets which exhibit
structural magnetic asymmetries and other an-
isotropies. These cause the antiferromagnetic
phase to split into two subdivisions which would
produce along T, (H) a triple point where the pa-
ramagnetic and two spin-ordered subregions are
in equilibrium.

In the absence of a magnetic field, we may
represent the He' melting anomaly by the tem-
perature derivative of the melting pressure
P (T). From thermodynamics,

dP (T) [S,(T)-S,(T)]
dr [v,(r)- v, (r)] '

where the subscripts l and s of the molar entro-
pies and volumes denote equilibrium liquid and
solid, respectively. The melting anomaly starts
at T „, where S, equals S, and P„(T) has a mini-
mum; it ends at Tf „, where P (T) has a maxi-

H, —kr, (0)/p,

where p. is the magnetic moment per spin, the
z(H) spins on the (-) sublattice are exhausted
and the system ceases to be an antiferromagnet.
At field strengths 8 & 8„ the antiferromagnetic
transition temperature is lowered. With Eqs. (1)
and (2) we have

Z', (H) = vz(H) ~
J (/2k

= [.(H)/z(O) ]r, (O)
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mum. Since Tz „&T,(0), the anomaly terminates
when the freezing solid is in its spin-ordered
state. At T & T, (0) or T & T, (H),

S,(T, H) )S,(T, H-O), l.5

(8S,/8H) r )0.
Isothermal magnetization of an antiferromagnet
is accompanied by an entropy increase because
of the asymmetry introduced by the two unequal

sublattice magnetizations a, and g' . For ma-
terial in a field, the melting-line branches P (T,
H = const) generate the melting surface P (T, H).
For every value of H = const, there is a melting
line such that

dP. (r, H) fs, (r)-s. (r, H)1

dr [v,(r)-v, (r)] '

neglecting' the extremely small changes in en-
tropy of the liquid on magnetization, and in mo-
lar volume of the solid spin system on magneti-
zation. At T &T, (0) or T&T, (H), Eq. (6) shows
that the melting anomaly is enhanced in the pres-
ence of a field since idP„(T, H)/dry) idP (T)/
dTi. This is another way of demonstrating the
lowering of T, (0). The effect of the field on the
melting-curve minimum at T„-0.3 K is, how-

ever, quite negligible. With S,(T, H) )S, (T, H

=0), and with both functions being of monotonic
variation in T, T & T, (0), and S,(T) unchanged,
the right-hand side of Eq. (7) can only vanish at
T& „(H) &T& „(0). Thus the final temperature
T»(H) accessible by adiabatic freezing of He'

in the presence of a magnetic field H &FI, is low-
er than the zero-field value T& „(0).

To illustrate quantitatively the adiabatic freez-
ing in the presence of the magnetic field, it is
useful to consider one particular line P~, (T,H)
of the melting surface. This critical melting line
refers to those final states of the all-solid sam-
ple which are along the critical transition line
T, (H). One finds here dP„, /dT &0, the equality
occurring only at absolute zero. By Eq. (7), this
melting-pressure branch increases monotonically
with decreasing temperatures toward its limit
value at absolute zero. With S, ,(T, H) )S,(T,
H =0), which is another expression of the negative
temperature derivative of P~,(T, H), final states
of the all-solid sample along T,(H) enable one,
in priniciple, to reach arbitrarily low tempera-
tures.

Shown in Fig. I are two sets of final temper-
atures, indicating the effect of external fields.
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FIG. 1. The effect of an applied uniform magnetic
field on the production of very 1ow temperatures T&

by adiabatic freezing of He3 as a function of the initia1
temperature T; of the starting a11-liquid sample. The
lower curve gives those T&(T;, H) values which are as-
sociated with all-solid final states along the critical
spin-ordering transition line T~ (8) . The upper curve
refers to cooling in the absence of a magnetic field.

The upper curve is for Tz(T, , H =0) obtained
earlier, ' and is to be compared with Tf(T, , H)
shown as the lower curve. The lowest final tem-
peratures are limited by the starting tempera-
tures T; of the all-liquid sample. At the present
time, experimental demonstration of the effect
may require measurement of the temperatures
reached in adiabatic freezing in the absence and
presence of the field, starting with identical ini-
tial states of the all-liquid sample and forming
the all-solid samples of the same entropy. The
measurements of the melting-pressure branches
P„(T,H), at constant field strengths, or differ-
ences P„(T„H)-P„(T„H) along these branches,
would complete the verification of the predicted
melting properties of He' in the presence of a
magnetic field.
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