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A calculation of the phonon frequencies of the P-W structure crystals shows that long-
wavelength optic-mode instabilities occur. These are associated with a high density of
electronic states in the transition-metal d bands. The I'&&( ~ and 125 ~ optic modes soft-
en: these are consistent with a second-order structural phase transition.

Soft optic modes have been proposed' as un-
derlying the structural phase transition, "and
other anomalous properties' of the P-W com-
pounds V~Si and NbsSn, including possibly their
transition to the superconducting state.

In this Letter we report on a theoretical mecha-
nism for such optic-mode softening. We find that
when the Fermi level falls in a region of large
electronic density of states, the long-range bare-
ion Coulomb potentials are overscreened and two

q =0 optic modes are destabilized. These are
two of the three modes which the Landau theory
permits to be order parameters in a second-or-
der structural phase transition. ' The remaining
optic modes are stable.

The calculation of the phonon spectrum makes
use of the adiabatic harmonic approximation, and
is for zero temperature (T =0). Results for T )0
will be published elsewhere. We have used the
linear chain model" for the d-band states, and
we have assumed that the Fermi level falls within
the d bands, and that transitions to other bands

(s, P, etc. ) can be neglected or can be included
in an effective charge for the ions.

The long-range-force contributions to the dy-
namical matrix have been accounted for by using
bar e- ion Coulomb potentials screened by the
wave-number —dependent, zero frequency, self-

consistent-field dielectric function, computed
for scattering within the d bands in the diagonal
screening tensor approximation. ' ' The details
of the calculation are given in Ref. 8. In comput-
ing the dielectric function, matrix elements in-
volving the d-band Bloch functions are required. "
We have constructed these Bloch functions from
atomic d functions of the form

where

with A. a free parameter determining the range of
the d-state Bloch functions, and F, (&, cp) a spher-
ical harmonic.

In Fig. 1 we illustrate the linear chain or near-
est-neighbor tight-binding model d-band ener-
gies. ' The g are related to atomic overlap in-
tegrals, k is one of the three Cartesian compo-
nents of the wave vector, and a is the lattice con-
stant. There are three degenerate sets of one-
dimensional-like d bands corresponding to the
three coordinate (chain) directions.

The adjustable parameters in the theory are
$2, Z„, Zs, EF, and A.a=a. Here the Z's

are the bare ionic charges, and F-F is the position
of the T =0 Fermi energy within the d bands.
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the various intraband densities of states, and a
large density of states overscreens the bare-ion
potentials.

Labbe has shown that for the linear chain mod-
el with the Fermi level falling near +$, the ef-
fective (T dependent) density of electronic states,
n(EF, T), is an increasing function as the temper-
ature is lowered from above the structural phase-
transition temperature. " From our results
shown in Fig. 2, this corresponds to the soft
mode frequency decreasing with decreasing T,
as required for the phase transition. Our numer-
ical results for the acoustic modes and elastic
constants also shows a softening with decreasing
temperature as is observed experimentally.

Although our theory allows either the I » ' or
I»' ' optic modes to be soft, we are unable to de-
termine which one of these two modes is soft for
a specific P-W compound. This is due to the fact
that in our calculations the soft mode is deter-
mined by the position of the Fermi level within
the d bands, and we use this position as a param-
eter. Because of this, V,Si and Nb, sn may have
different soft optic modes. Their resulting lower
symmetry tetragonal space groups (as yet experi-
mentally undetermined) would then differ also. "
By contrast, the I » ' optic mode which is also
group-theoretically permissible as an order pa-
rameter is found to be stable in our calculations.

Our results may transcend the limitations of
the simple linear-chain d-band model. Detailed
study of the dynamical matrix shows that the rea-
son that the I'„and T'»' optic modes are the
most unstable is a combination of the P-W struc-
ture itself (which to a large extent determines
the allowed normal-mode displacement patterns
independent of the forces), the high density of
electronic states at the Fermi level, and the lo-
calized nature of the d-electron Bloch functions.
These conditions cause those normal modes hav-

ing nearest-neighbor transition-metal atoms
moving parallel to each other to be the most high-

ly renormalized from the bare-ion frequencies.
The I »' ' and I »' ' optic modes have displace-
ment patterns satisfying this condition. It seems
likely that these features will persist in a more
complicated model. Ke also note that the over-
screening decreases away from E', so that the in-
stability mechanism we have described is truly
a long-wavelength phenomenon.

Experimental results determining which of the

two long-wavelength optic modes are soft for a
given P-W compound are needed. This would en-
able us to determine the parameters in our theo-
ry, and would also facilitate an investigation of
the relationship between any soft optic modes and
the superconducting properties of these com-
pounds.
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