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PAIRWISE NONADDITIVE DISPERSION POTENTIAL FOR ASYMMETRIC MOLECULES
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The form of the pairwise nonadditive three-body dispersion potential for asymmetric
molecules is derived. It is found that molecular asymmetry can have a large influence
on interactions of this type. An example indicating the possible use of these results in
understanding cohesive energies in crystals is given.

The work of Muto, ' Axilrod and Teller, ' and Midzuno and Kihara' on three-body pairwise nonadditive
dispersion interactions between spherically symmetric molecules is extended to the case of molecules
of arbitrary asymmetry.

Consider three neutral molecules n, P, and y, which are not necessarily identical, in nondegenerate
ground states. The perturbation to the sum of the free-molecule Hamiltonians is, in the dipole ap-
proximation,

V= V 8+V +V~

with

V Bc»~ci (T5) jj».»p Sj»

where»L, is the ith component of the dipole-moment operator for molecule o. and (T ~)," is the ij

component of the interaction tensor between molecules o. and P. This tensor is defined by the equation

(T„B),, = —~ a '[3(e a), (e ~), —5;, ],
where ~ 8 is the separation between molecules n and P, and (e 8); is the ith component of a unit vec-
tor pointing from molecule n towards molecule P. (Here, and elsewhere in this paper, Latin letter
subscripts denote vector or tensor components, while Greek letter subscripts refer to molecules. )

The pairwise nonadditive dispersion energy W is given, according to third-order Rayleigh-Schro-
dinger perturbation theory, by

g&a(o')g(P) i~.~ ln(o)n(P)&&n(o)z(y)
I
l'. , k(&)n(y)&&n(l')n(y) I l'a, la(P)s(y))

[E(n(o.))+ E(n(P))] [E(n(P)) + E(n(y))]

g eg- V znen n gy V~, ny ncYny V g Qgy
[E(n(o) )+E(n(P) )] [E(n(a) )+ E(n(y) )]

g egy V n any n og V z on n ny Vz, gy
[E(n(n)) + E(n(y) )] [E~(n(P) )+ E(n(y) )]

(4)
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where g(n) denotes the ground state of molecule n, n(n) the nth excited state of molecule n, and

E(s(n)) the energy difference between states n(n) and g(n). The summations extend over all values of
n(n), n(P), and n(y). Equation (4) is readily put in the form

ii'= 4(T.g);r (T.,)pg (7'g, )...»&~(n)
I ~.; I ~(n)& &~(n) I I .p I g(n)& &~ (P) I ~ Bj I ~(P)& &~(C) I ~ g., I ~(P)&

X4'(y)
I P,~ In(y)& &n(y) I

p. z Ig(y)&,

where

E(n(n))+ E(n(P))+ E(n(y))
LE(n(n))+ E(n(P))] I

E(n(n))+ E(n(y))] IE(n(P))+ E(n(y))]

Now, following Unsold' and, even more closely, the procedure of Buckingham' in their treatments
of second-order perturbation effects, we approximate D by the equation

(v„+U,+ v,)v.v, v,
(U„+Ua)(U + U )(Uz+ U )Eg(n))E(n(P))E(n(y))'

where U is some characteristic energy for molecule n. (This step implies that the characteristic
energies corresponding to the three principal directions of the polarizability tensor of a molecule are
equal. In the study of two-body dispersion energies, this assumption is frequently made. ") If, fur-
thermore, the U's are taken to be exactly the same quantities which occur in Ref. 5 in the treatment of
two-body dispersion forces between asymmetric molecules, we may write

C a=3U v&n„n8/2(U + Us), C =3U U n n /2(U„+U ), Ca =3U&U nan /2(UB+ U ), (8)

with C 8 the magnitude of the coefficient of the spherically symmetric component of the x 8 second-
order two-body dispersion energy, and o. , the mean polarizability, being one third the trace of the
polarizability tensor of molecule n. Equations (8) can be inverted to give the U's in terms of the C's.
%e then find

(U + Uq+ U,)U„U~U, 2v

(V.+ U, )(V„+V,)(v, + U, ) 3n.n, n, ,
'

where

and

2R ~~,(R.+R, +R,)

(R +R g)(R +R ~)(R g+R ))'

R '=(C n) '+(C ntl)
' —(C n )

R, -'= (C, ,n.)-'+(C.,n, ) -'-(C. ,n, ) -',

'=(C, nq) '+(Cskin, )
' —(C, qn~)

(10)

Thus, on using the well-known quantum mechanical expression' for the components of the polariz-
ability tensor (n );r, Eq. (5) becomes

(T.a);, (T.,) g, g (T8,)...(n.);r, (n g)...(n, ),.3&~A gA ~

In the special case of spherical molecules, Eq. (12) reduces to the result, derived by means of a vari-
ational calculation, found by Midzuno and Kihara. '

The application of Eq. (12) to the analysis of third virial coefficients of gases composed of asymmet-
ric molecules is described elsewhere. Here, we wish to indicate a possible use of Eq. (12) in under-
standing cohesive energies and structures of molecular crystals. According to Eq. (12), there is a,

strong dependence of the pairwise nonadditive three-body dispersion energy on the relative orienta-
tions of the three molecules. To give a simple quantitative demonstration of this, consider the case
of three identical linear moledules with centers positioned on a straight line as shown in Fig. 1. In
case I, the axes of the two end molecules are aligned with the line joining centers, while in case 2
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FIG. 1. The two orientations for a group of three
molecules whose relative energies are shown in Fig. 2.

the axes are perpendicular to this line and paral-
lel to the plane of the figure. In both cases, the
middle molecule is allowed to rotate in the plane
of the figure making an angle ~ with the line join-
ing centers. The polarizability tensor of a linear
molecule can be described by two constants: e
and the anisotropy" z. If 8'~ denotes the special
form of Eq. (12) when the three molecules are
spherical and with the same mean polarizabilities
as in the case of the linear molecules, we find

&/&~ = 1+ 2
~-~z'+ 23 ~(3+ 10~+ 11m') cos'up

for case 1, and

W/Wg = 1 + 2 K —
2 K —

2 K Sin (d —6K (1—K) cos (aJ

for case 2. A plot of these functions is given in
Fig. 2 where the values of K correspond to those
for CO, (z =0.266) and N, (K =0.131). Thus, rath-
er large changes in the pairwise nonadditive
three-body dispersion energy can occur for an-
isotropic molecules compared with the case of
spherical molecules. For case 2 (K =0.266),
there is even a change from an attractive inter-
action in the case of spherical moleeules to a re-
pulsive interaction for the linear moleeules when
& is between 66 and 114 degrees. Calculations

FIG. 2. A phot of the relative three-body dispersion
energies of linear molecules compared with spherical-
ly symmetric molecules for two values of x, the polar-
izabil ity anisotropy.

of this type with appropriate descriptions of mo-
lecular asymmetry and orientations can have a
bearing on the understanding of the cohesive en-
ergy of iee or other crystals.
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