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PROPERTIES OF THE 5.256-MeV STATE IN Si*%:

EVIDENCE

FOR A ROTATIONAL BAND WITH K" =4 *
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Lockheed Palo Alto Research Laboratory, Palo Alto, California 94304
(Received 18 February 1970)

The spin of the 5.256-MeV level in Si%? has been determined to be J=—9-; its mean life-

2

time has been measured to be 7,,=(0.95+0.15) x10~18 sec. The electromagnetic decay
of this state is >90 % via cascade radiation through the J™ :-21" state of Si?® at 3.624 MeV,
with Ey =1631.3+0.5 keV; the transition has quadrupole/dipole admixture 6=-—0.49
£0.07. This multipole mixing together with the measured lifetime fix parity m=-1 for

this state.

The nucleus Si?° is of particular interest since
it is in a mass region where the nuclear deforma-
tion is not well defined and is changing from pro-
late to oblate.! A good account of the static and
dynamic properties of the low-lying positive-par-
ity levels has been obtained in terms of the Nils-
son model? by assuming two mixed rotational
bands and an oblate nuclear deformation, char-
acterized by 6=-0.15."3 Negative-parity levels
have been previously located at 3.624 MeV (J"
=%7) and 4.935 MeV (J"=27). The large reduced
widths for these states observed in the reaction*
Si%8(d, p)Si*° suggests that they have most of the
[+ and pg » single-particle strength. We have
been engaged in a study of the Si*° levels in the
energy interval 4<E,(MeV)<5.3, observing y
radiation produced in the reaction Mg?%(a, 1)Si%®*
(®,=0.033 MeV). For the level with E, =5.256
MeV, we have made an assignment J" =2~ and
measured a partial width I‘Y(Ez) =2T7+7 Weiss-
kopf units for the 5.256 — 3.624 transition. We
propose, in the language of the Nilsson model,
that this level be described as the second mem-
ber of a K" =%~ band based on a neutron in orbit
10, with the 3.624-MeV level (J" = £~ ) being the
band head. This is the first such band located in
the s-d shell.

The 5.256-MeV level in Si*° is well established
through analysis of charged particle spectra fol-
lowing the reactions Si®**(p, p’)Si*®, Si%®(d,p)Si%®,
Si®%(d,t)Si*°, and Al*"(He®,p)Si*®.* However, no
spectroscopic information on this state has been
extracted from any of these experiments. We
have determined the y-ray decay mode (hitherto
unreported) of this level by analysis of y-ray
spectra produced by bombarding a 600-ug/cm?
Mg?® foil target with o particles. The y radia-
tion was detected in a 37-cm?® right cylindrical
Ge(Li) diode, 40 mm diam X 32 mm long, which
could be rotated about a vertical axis through the
reaction site. Pulse-height distributions were
collected using a 4096-channel analog-to-digital
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converter and computer-based data acquisition
system. As the incident a-particle energy is
raised above threshold for production of the
5.256-MeV level, a y ray with energy £, =1631
keV appears in the spectrum. We show in Fig. 1
portions of the y-ray spectrum obtained in this
manner, measured both above (E,=6.4 MeV) and
below (E,=6.0 MeV) the threshold energy of 6.03
MeV. On the basis of its behavior near threshold
and its measured energy E,=1631.3+0.5 keV, we
assign the y ray to the 5.256 - 3.624 transition.
From energy determinations of 1596.5+ 0.5 and
20217.7+ 0.5 keV for the y rays from the decay of
the 3.624-MeV level, we arrive at an excitation
energy of E, =5255.5+ 1.0 keV for the 5.256-MeV
level, slightly higher than the energy of 5250+ 7
keV deduced from the charged particle work of
Hinds and Middleton quoted by White.® The spec-
tra show no evidence for any decay mode for the
5.256-MeV level other than via transitions to the
3.624-MeV level; we estimate the branching of
this decay mode as >90%.

The angular distribution of the 1.631-MeV y
ray was measured at three bombarding energies
above threshold, E,=6.2, 6.4, and 6.6 MeV. These
distributions were parametrized by a Legendre
polynomial expansion W(8)=1+A4,Q,P,(cosb)
+A,Q,P{cosb), where @, and @, represent the
solid angle attenuation factors for our geometry.
The results are summarized in Table I. Near
threshold, the reaction is expected to be dominat-
ed by outgoing s-wave neutrons, and thus the re-
coiling Si®**(5.256) nuclei are aligned with predom-
inant populations of magnetic substates with quan-
tum numbers m =+3. Angular distributions may
be analyzed in terms of level spins and the y-ray
multipole mixing ratio in the formulation de-
scribed by Litherland and Ferguson for a collin-
ear geometry.® With the J =% assignment for the
3.624-MeV level (see Ref. 4) an unambiguous spin
assignment J = § results for the 5.256-MeV level.
The 1.631-MeV y ray has an (L +1)/L multipole
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FIG. 1. Portions of the y-ray spectra produced in the reaction Mg?® (o, 7) Si* measured (a) at E4=6.0 MeV, be-
low threshold for the 5.256-MeV level, and (b) at E,=6.4 MeV, 370 keV above threshold. The Ge(Li) y-ray coun-
ter described in the text was located at 6.,=90°, 15 cm from the reaction site in these measurements. The peaks
in the spectrum are labeled in energy units of keV, as well as by the transition in Si%® to which they correspond.
Note the peak labeled 1631 keV is present in spectrum (b), but not in spectrum (a).

mixing 6(1.631)=-0.49+0.07, which together with
the partial quadrupole width I'(L =2)=1.35+0.37
meV requires negative parity for the 5.256-MeV
level, since the 3.624-MeV level has negative
parity. [The positive-parity assignment results
in an M2 width T'(M2) =838+ 232 Weisskopf units. ]
Figure 2 displays the angular distribution of the
1.631-MeV radiation measured at E,=6.4 MeV,
together with the results of a least-squares fit to
the angular correlation formulas in terms of the
goodness-of-fit parameter, x* and tan™'6(1.631).
The preceding analysis might be expected to fail
if the cross section near threshold were dominat-
ed by a resonance for the emission of p-wave
neutrons. However, Fig. 2 shows that even the
assumption of a 33% population for the m =+ 3§
substates does not change the final results signifi-
cantly.

The lifetime of the 5.256-MeV level was deter-
mined with a variant of the Doppler-shift attenua-
tion method.” The Doppler shifts of the 1.631-
MeV y ray were observed at 6,=30° and 6, =135°
using two targets thick to the Si%?" recoils and
having different stopping characteristics: an iso-

Table I. Angular distribution coefficients for the
1.631-MeV v ray.

Eq ArQe Ay Ay A2

6.2 0.44+0.08 0.06+0.08 0.44+0.08 0.06+0.07
6.4 0.55+0.02 0.13+0.02 0.56+0.02 0.14+0.02
6.6 0.53+0.03 0.11+0.03 0.53+0.03 0.11+0.03

2Computed with @,=0.99 and @,=0.96.

topically pure Mg?® foil and an alloy of 10% Mg?®
in Au. The beam energy, E, =7 MeV, was chos-
en close to threshold to limit the recoiling nuclei
to a well-defined forward cone. From a compari-
son of the centroid shifts observed with these two
targets, the value 7,,(5.256)=(0.95+0.15) X107 *®
sec (1"7 =6.9+ 1.1 meV) was deduced. Nuclear
stopping and scattering were included in the anal-
ysis, and the latter effect was calculated accord-
ing to Blaugrund.®

The spectroscopy of the positive-parity levels
in Si*® with E , < 3.07 MeV has been interpreted
in the framework of the collective model by
Bromley, Gove, and Litherland,* who concluded
that a deformation 6 =-0.15 was in accord with
the experimental data. In this model, the ground
state and the levels at 2.43 and 2.03 MeV are, re-
spectively, the J"=3*, 3*, and $* members of
the K"=3"* ground-state band, while the 1.27- and
3.07-MeV levels are the J"=3* and 3* members
of a K=3"* band. Hirko has recently extended this
interpretation and done a detailed band-mixing
calculation.® While the inclusion of the Coriolis
force to mix the K"=3"* and K" = +* bands (based
on neutrons in orbits 9 and 8, respectively) de-
stroys the simple concept of a state belonging to
one particular band, such a mixing accounts very
well for the properties of the positive-parity
states with E, < 4.07 MeV, again with oblate de-
formation for the nucleus. The properties of the
3.624- and 5.256-MeV levels suggest that they
might be described as members of a K" = £~ band
based on Nilsson orbit 10 [Nn,A =303). The sym-
metric rotor model with oblate deformation ac-
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FIG. 2. Angular distribution of the 1631-keV y ray
produced in the reaction Mg (o, n) Si% at E,=6.4
MeV and assigned to the Si%® 5.256 — 3.624 transition
(upper half). The Ge(Li) counter was 15 cm from the
reaction site. Lower half: The usual x* vs tan"6(1631)
plots resulting from a fit of this distribution with the
angular correlation formalism for the trial spins J of
the 5.256-MeV level. A relative population of 90 % and
10 % for the |m |=% and |m|=% substates was assumed,
based on the relative transmission coefficients for s~
and p-wave neutrons. The dashed curves show the re-

sults if a relative population of 67 % and 33 % is assumed.

counts for the low excitation energy of the £~
state. Also, such a band is not expected to mix
with states in the nearby positive-parity bands.?

We give some detailed consequences of this de-
scription. From the observed energy spacing be-
tween these two levels, we obtain #2/2I =180 keV
for the moment of inertia parameter, consistent
with this picture. Extraband transitions to mem-
bers of the K =3 or 3 band are forbidden by K se-
lection rules; the 5.256-MeV level is observed to
decay only to the 3.624-MeV level, while the life-
time of the 3.624-MeV state is long (7,,=4 X 1072
sec). We next examine the partial widths T'(M1)
and I'(E2) of the 1.631 (5.256 — 3.624) transition,
assuming this is a 100% branch. From the mea-
sured width of the 5.256-MeV level and multipole
mixing of the 1.631-MeV, ray we deduce the par-
tial widths I'(M1)=5.59+0.93 and I'(£2)=1.35
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+0.37 meV, corresponding to 0.06+0.01 and 27

+ T Weisskopf units, respectively. An E2 en-
hancement of this order is generally accepted as
a sign of collective motion. Finally, we calculate
the Nilsson-model estimate of I'(M1) and the pre-
dicted sign of the E2/M1 mixing ratio, and ex-
tract the quadrupole moment |@,| from the mea-
sured E2 rate. The reduced M1 transition-ma-
trix element B(M1) for an intraband transition is
given in terms of g4 and g, the intrinsic and
collective gyromagnetic ratios, and is

2
(R k10l RO g (1)
Here, (J;K10|J;K) is a vector coupling coeffi-
cient. For orbit 10, g4 =-0.546 and we estimate
gr as Z/A. We find T'(M1, Nilsson)=27.6 meV,
which overestimates the measured I'(M1) by a
factor of 5.

The expression for B(E2), the reduced E2 tran-
sition probability, in terms of the quadrupole
moment Q,, is

BE2;JK ~JK)
= (5/16m)e*(JJ20|J (K)?Q 2. 2)

The measured transition speed 1.35+0.37 meV
results in lQol =66+9 F2 For a comparison the
Thomas-Fermi value estimated with deformation
6=-0.15 is |Q,| =20 F2.

The model predicts the sign of the E2/M1 mix-
ing ratio and the sign of the deformation to be the
same in this band.® Since 6(1.631)=-0.49, the
deformation is predicted to be oblate, in agree-
ment with the conclusions of Bromley, Gove, and
Litherland' and Hirko.® Altogether then, the
model gives a reasonable account of the observed
properties of the 3.624- and 5.526-MeV levels.
We conclude, however, with the note that the ob-
served properties of these two negative-parity
states may be in agreement with weak-coupling
model predictions if we attribute the 3.624-MeV
level to the [(Si%®),+ X 1, - ), /.~ configuration, and
the 5.256-MeV level as the J" = 3~ member of the
multiplet due to the [(Si%®),+ X 1, ,~]; configura-
tion. Since our work suggests no other negative
parity levels which could be reasonably assigned
to the [(Si*®),+ X v,/,-] configuration below an ex-
citation energy 5.284 MeV, and the next knawn
state is at 5.649 MeV,* we favor the strong-cou-
pling description at this time. We are extending
our study of Si®® to include levels above 5.3-MeV
excitation energy with the aim of establishing a
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clear choice between these descriptions.

*Research supported by the Lockheed Independent Re-
search Fund. Work performed at the Stanford Univer-
sity tandem Van de Graaff Laboratory, supported by
the National Science Foundation, and at the Lockheed
Nuclear Physics Laboratory.
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The magnitude of the expected superfluid transition temperature and the form of the
gap are obtained for regimes of neutron density expected in neutron-star cores. For
neutron densities exceeding 1.5 %10 g cm™3 the gap is anisotropic but nodeless, lead-
ing to thermodynamic properties of a conventional BCS-type superfluid.

In the density regime 5x10¥ gecm ™ <p< 6
X 10 g cm 78, characteristic of neutron-star
cores, the neutron density varies from about 3
to near 4 times the density of neutrons in normal
nuclei. The attraction between appropriately
paired neutrons at the top of their Fermi sea
causes a BCS-type superfluid behavior.!"® The
magnitude and form of the gap in the single-par-
ticle excitation spectrum depends sensitively
upon density. This is because the appropriate
Fermi energy varies as p??3 and the known neu-
tron-neutron phase shifts depend strongly on
energy. When p < 1.5X10" g ecm ™3, 1S, attrac-
tion gives conventional Cooper pairing; when
p2 1.5X10" g cm ™3, the significant attraction is
in the 3P, state. All other S and P phase shifts
are much smaller or repulsive in this latter re-
gime, and the resulting gap is nonisotropic.
Anisotropic superfluidity has been considered
earlier for liquid He® with P- and D-wave pair-
ing. %5

We assume that for neutrons near the top of
their Fermi sea, all interactions vanish except

IS, and 3P,, and that these can be adequately de-
scribed by a separable-type potential chosen to
fit the scattering data.® Inside normal, symmet-
rical nuclear matter the effective phase shift 6*
and mass m* differ from their values appropri-
ate to free space. In an almost pure neutron en-
vironment, these differences are expected to be
much smaller because the n-p interactions,
which give the dominant contribution to them in
normal nuclear matter, are not present. We
assume 0* =0 and m*=m, which is also support-
ed by explicit numerical calculations at densities
near those of neutrons in nuclei.”

The superfluid transition temperature 7', ob-
tained numerically from the usual BCS linear
equation® with this interaction is given in Fig. 1.
A qualitative fit3 to these results and to others
with slightly different m* is

kT,
"oE. T

_%_711_ cotd*, (1)

1 T+

where &* is either the 'S, or 3P, phase shift,
whichever is the dominant attractive one at the
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